
Deep Appearance Prefiltering

STEVE BAKO, University of California, Santa Barbara, USA
PRADEEP SEN, University of California, Santa Barbara, USA
ANTON KAPLANYAN, Facebook Reality Labs, USA

Ours RT Ours RT Ours RT Ours RT

City Scale 8 Scale 7 Scale 6 Scale 5
Per-pixel memory decrease: 28.1× 44.6× 155× 528×

Fig. 1. We demonstrate the first neural framework for prefiltering the appearance of complex scenes without any access to the original geometry, materials, or
textures, whereas a ray tracer (RT) would require the memory cost of the full scene. This allows for a significantly reduced memory footprint across pixels
relative to the reference inputs to the ray tracer, as shown here for the City scene, which uses the Disney BRDF and consists of over a million voxels in scale 8,
the finest resolution. Our method is compared to ray tracing on the top, while the bottom shows the selected voxels colored with the scale being accessed.

Physically based rendering of complex scenes can be prohibitively costly
with a potentially unbounded and uneven distribution of complexity across
the rendered image. The goal of an ideal level of detail (LoD) method is
to make rendering costs independent of the 3D scene complexity, while
preserving the appearance of the scene. However, current prefiltering LoD
methods are limited in the appearances they can support due to their reliance
of approximate models and other heuristics. We propose the first compre-
hensive multi-scale LoD framework for prefiltering 3D environments with
complex geometry and materials (e.g., the Disney BRDF), while maintaining
the appearance with respect to the ray-traced reference. Using a multi-scale
hierarchy of the scene, we perform a data-driven prefiltering step to obtain
an appearance phase function and directional coverage mask at each scale.
At the heart of our approach is a novel neural representation that encodes
this information into a compact latent form that is easy to decode inside a
physically based renderer. Once a scene is baked out, our method requires no
original geometry, materials, or textures at render time. We demonstrate that
our approach compares favorably to state-of-the-art prefiltering methods
and achieves considerable savings in memory for complex scenes.

CCS Concepts: • Computing methodologies → Ray tracing; Visibility;
Reflectancemodeling;Antialiasing;Volumetricmodels; Learning la-
tent representations.

Authors’ addresses: Steve Bako, stevebako@ucsb.edu, University of California, Santa
Barbara, Santa Barbara, USA; Pradeep Sen, psen@ucsb.edu, University of California,
Santa Barbara, Santa Barbara, USA; Anton Kaplanyan, kaplanyan@gmail.com, Facebook
Reality Labs, Redmond, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/1-ART1
https://doi.org/10.1145/3570327

Additional Key Words and Phrases: level of detail, appearance prefiltering,
machine learning, volume rendering, transmittance, beam tracing

ACM Reference Format:
Steve Bako, Pradeep Sen, and Anton Kaplanyan. 2022. Deep Appearance
Prefiltering. ACM Trans. Graph. 1, 1, Article 1 (January 2022), 22 pages.
https://doi.org/10.1145/3570327

1 INTRODUCTION
Photorealistic rendering of complex synthetic and captured 3D envi-
ronments can have an unbounded rendering cost for scenarios such
as those in the augmented and virtual reality (AR/VR), gaming, and
film industries. The geometry of these scenes can be prohibitively
complex, requiring significant amounts of both storage and compu-
tation [Savva et al. 2019], especially on immersive mobile devices
where compute is limited and missing the performance target is
not an option. Furthermore, both captured real-world environments
and physically based synthetic scenes typically have sophisticated
appearances due to complex materials and light transport. Thus, it
is essential for rendering systems to keep costs within budget and
make the rendering complexity more predictable.

One strategy is to perform an offline precomputation of the light
transport falling within a given pixel to utilize during subsequent
renderings and obtain an estimate of the pixel color with fewer
samples than before, as is done in the prefiltering framework for
surfaces by Belcour et al. [2017]. Another option is to apply level
of detail (LoD) techniques that replace complex 3D assets with an
ideally indistinguishable multi-scale approximation to determine the
appearance of surfaces and volumes more efficiently. Seminal work
in this area includes geometric simplification [Hoppe 1996; Xia et al.
1997; Cohen et al. 1997] and texture mip-mapping [Williams 1983],
among many others. Recent work takes a more holistic approach by
prefiltering multiple scene parameters simultaneously, essentially

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3570327
https://doi.org/10.1145/3570327

1:2 • Bako, Sen, and Kaplanyan

aiming at preserving the overall appearance of the scene at different
scales [Heitz et al. 2015; Dong et al. 2015; Loubet and Neyret 2018].

However, current approaches have numerous limitations. Firstly,
the types of materials that can be accurately prefiltered with exist-
ing models are limited. For example, effects like specularities and
high-frequency glints are difficult to approximate, as these effects
show up as unique shapes or spikes within a narrow solid angle.
Moreover, materials with sophisticated BRDFs, such as the Disney
BRDF, typically cannot be captured easily since the lobes are often
combined in a non-linear way and mapping from arbitrary BRDF pa-
rameters to a volumetric representation is non-trivial. Finally, local
occlusions are also difficult to fully capture in previous approaches.
Another limitation of existing prefiltering work is that at each

particular scale there can be a mixture of both macroscale geom-
etry, more amenable to techniques including edge simplification
and microfacet approximations, and aggregate microgeometry, for
which a volumetric representation such as microflakes is proven to
be more suitable. Ideally, a prefiltering method would not have to
choose between different representations. The state-of-the-art hy-
brid approach by Loubet and Neyret [2017] uses geometric analysis
to label regions of a scene as either belonging to macrogeometry or
an aggregate microgeometry in order to perform either the geomet-
ric or volumetric prefiltering, respectively. Although this provides
improvements by enabling a more fine-grained heterogeneous rep-
resentation, the heuristics used to decide on a label can misclassify
regions that do not clearly belong to one or the other representation,
which again results in a different appearance. There can be regions
within a single asset that straddle both macro and microgeometry
and where selecting a single representation could have errors (see
Fig. 2). Thus, such approaches can neither represent the continuum
of in-between cases nor smoothly transition between them, which
is important for the practical rendering of complex scenes.
To overcome the aforementioned issues and to robustly handle

a wide range of appearances, we propose a multi-scale hierarchy
of local neural representations that can preserve the appearance of
scenes containing both complex geometry and materials. We use a
standard, multi-scale sparse voxel octree [Laine and Karras 2010],
or SVO, as the data structure for our representation. This allows
us to render without the original geometry or materials once an
initial offline data generation step is completed, during which a ray
tracer captures the light transport within each voxel. Our network
then learns to represent the rendered appearance within a voxel as a
lightweight latent representation, which can be efficiently evaluated
within a standard physically based renderer.

To summarize, the precomputation stage of our framework vox-
elizes a given scene, computes per-voxel reflectance data, and trains
a single network to compress this information across all voxels of the
specific scene. We note that our network framework is trained per
scene on data that takes days to precompute and does not generalize
to new scenes (i.e., new scenes require performing data generation
and training again). Afterwards, at runtime, a beam tracer is used to
find all voxels falling within a pixel’s footprint and the correspond-
ing compressed information is efficiently decoded by our network
to accurately determine the voxel’s contribution and, ultimately, the
color of the pixel using only a fraction of the original memory.

Our current system serves as a proof-of-concept that we hope
inspires a new, compelling research direction: machine learning for
prefiltering. Although this is a promising area to explore, there are
numerous challenges to overcome, and, thus, in this initial prototype,
we seek to address some of the most important aspects of the prob-
lem and leave other issues as limitations to be addressed in future
work. First, we focus on rendering the directly visible appearance,
which is often the most sensitive to artifacts and, therefore, quite
challenging. However, in Sec. 3, we present the framework in the
context of general light transport to show how the framework can
be extended to arbitrary bounces, not just the first bounce shown in
the results. In addition, as is common in prefiltering and LoD meth-
ods, we assume that the prefiltered portion of the scene is mostly
static and can be sufficiently reused across multiple renderings for
users to reap the full benefits of our approach.

Thus, our results have limitations include handling only the pri-
mary bounce on scenes using simple homogeneous materials (i.e.,
all objects use the Disney BRDF, albeit with different artist-set pa-
rameters). Although our theoretical framework supports global
illumination, multiple bounces are omitted from our implementa-
tion and results due to the extra computational overhead required
during rendering. Our method captures local shadows inherently
during voxel data generation, while global occlusions are handled
through shadow maps that we generate. Currently, our unoptimized
implementation is bottlenecked by network inference, which can be
alleviated by GPU parallelization. In its current form, our approach
is only faster than ray tracing at coarser LoD scales.

In summary, our work makes the following contributions:

• We introduce the first neural method for appearance prefilter-
ing of large complex scenes, requiring only data structure
traversals and network inference to generate an image with-
out using the original geometry or materials at render time.

• Our data-driven representation can preserve hard-to-render
appearances resulting from sophisticated materials, complex
geometry, local occlusions, and high-frequency, view-dependent
effects such as specularities by capturing the phase function
more accurately than current approximate models.

• We apply a learning-based compression of rendered data to
enable its efficient utilization by a physically based renderer.

• We preserve the full appearance in a single unified represen-
tation rather than using either geometric or volumetric sim-
plification techniques that cannot robustly handle all cases.

2 PREVIOUS WORK
Relevant to our approach are the various appearance models and the
sophisticated effects they capture, the prefiltered approximations to
these models, and recent applications of machine learning.

2.1 Appearance models
Background. For brevity, we only highlight appearance models most
relevant to our discussion. For more in-depth information, we refer
readers to texts on the subject [Pharr et al. 2016; Akenine-Moller
et al. 2018] and a survey on volumetric rendering [Novák et al. 2018].

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:3

Volumetric

City

Surface

Fig. 2. The regions of a scene often exist along a continuum with macro-
surfaces corresponding to watertight meshes on one end and an aggregate
microgeometry on the other. For prefiltering level of detail, geometric sim-
plification is applied to large surfaces, while volumetric appearance models,
such as microflakes, are used for the latter. Although most methods typically
have to decide between one or the other, recent hybrid approaches can use a
combination of the two for different portions of the same scene. Still, these
methods are susceptible to misclassification of regions and are bounded by
the limitations of the approximate models. Our approach avoids heuristics
and accurately represents the appearance of the scene, effectively handling
all scenarios along the spectrum implicitly.

Microfacet materials. Microfacet BRDF models can be used with
explicit geometry to render compelling effects, such as glossy re-
flections and glints. Yan et al. [2014] propose to use high resolution
normal maps to render effects such as glints on highly specular
materials, and later improve the efficiency by approximating details
with Gaussians [Yan et al. 2016]. Jakob et al. [2014] demonstrate
procedurally generated glints that are efficient, but do not scale to
larger structures. Zirr and Kaplanyan [2016] procedurally generate
materials to enable real-time rendering of glints and brushed mate-
rials at multiple scales, while Raymond et al. [2016] use a spatially
varying BRDF model to render scratched metals at multiple scales.

Recently, there have been improvements in the microfacet-based
BRDF for rendering highly specular materials especially at grazing
angles [Chermain et al. 2019a] and also a patch-based extension
to better handle glint rendering [Chermain et al. 2019b]. Since our
framework bakes out the appearance from a standard ray tracer,
it can be used in combination with these sophisticated BRDFs and
even multi-lobe models such as the Disney BRDF [Burley and Stu-
dios 2012], which we demonstrate. Furthermore, another important
advantage is that our neural framework does not require access to
the original scene, allowing us considerable savings in memory.

Microflake theory. Jakob et al. [2010] derive the anisotropic radia-
tive transfer equation to allow for physically based rendering of
anisotropic participating media. This enables objects to be rendered
as scattered particles in a volume rather than with a microfaceted
complex geometry, which is more expensive to compute. The model

is widely used for items including woven fabric, since it accurately
preserves such appearances at fine scales [Zhao et al. 2011, 2012].
However, some appearances are difficult to model such as glints and
self-occlusions that are naturally accounted for in our approach.

Correlated transmittance in volumetric light transport. Properly ac-
counting for transmittance correlation in anisotropic volumes in-
duced by surfaces is a non-trivial and open research topic. Bitterli
et al. [2018] introduce new transmittance models to account for cor-
related scattering in non-exponential media. Other work by Jarabo
et al. [2018] extend the Generalized Boltzmann Equation to use the
Radiative Transfer Equation (RTE) and account for spatially corre-
lated media. Guo et al. [2019] propose a new transmittance model
to account for correlation in RTE frameworks by using fractional
Gaussian fields. Our approach is orthogonal to these works and,
in theory, could utilize these more sophisticated models. However,
we decided to use the advantage of a data-driven representation
and store a simple, spatial coverage mask to account for correlation,
similar to Heitz et al. [2012].

2.2 Prefiltering and level of detail
Background. Until recently, level of detail approaches primarily con-
sisted of either geometric simplification in the case of macrosurfaces
or the mapping to a volumetric model for microgeometry. Mixtures
of the two have been proposed by recent hybrid approaches. We
discuss each in turn, but focus on the most relevant approaches and
refer interested readers to other sources for more information [Lue-
bke 2001; Luebke et al. 2003; Bruneton and Neyret 2011].

Geometric simplification. Seminal work in this area [Hoppe 1996;
Xia et al. 1997; Cohen et al. 1997, 1998; Cohen 1999; Luebke and
Erikson 2006; Yoon et al. 2006] take a mesh as input and reduce
their complexity by merging vertices or deleting edges. For assets
with large surfaces without a significant amount of sub-resolution
detail, these approaches can perform quite well and capture the
appearance faithfully. However, it is becoming commonplace that
for highly detailed models with complex materials applying a mesh-
based simplification will not capture these microscale structures or
interesting effects such as glints or sharp specularities.
Cook et al. [2007] use random pruning to simplify scenes with

aggregate detail, which are many small, similar objects next to each
other that form a complex whole (e.g., sand or foliage), but assume
geometric properties are uniformly distributed, an assumption that
is frequently violated. Prefiltering occlusions has also been exam-
ined [Lacewell et al. 2008], but this approach involves some prior
knowledge about the scene and which discrete scales are viable
candidates for their occlusion model. Simplification of textured
meshes [Williams et al. 2003] has also been explored.

There has also been work in hierarchical voxel representations to
approximate geometry [Crassin et al. 2009, 2011; Laine and Karras
2010; Heitz and Neyret 2012; Palmer et al. 2014]. These approaches
use a sparse voxel octree (SVO) data structure for prefiltering as-
sets in an appearance-preserving way for LoD by storing surface
attributes within each voxel. We use the SVO for storing our neural
representations by replacing the simplistic models with our phase
functions, base colors, and coverage masks that are precomputed
with a ray tracer and compressed/rendered by a neural network.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 • Bako, Sen, and Kaplanyan

Moreover, we can simplify scenes that have complex materials and
microdetail which are difficult to approximate in such frameworks.

Material reflectance and aggregate detail prefiltering. There has been
work on prefiltering in surface space to preserve the appearance
of complex materials and assets. Dong et al. [2015] use an ellipsoid
normal distribution function as a fast approximation in a microfacet
reflectance model for rendering metals. Kaplanyan et al. [2016] filter
the normal distributions on curved surfaces to preserve specular
highlights during real-time rendering. Other work explores repre-
senting the normal distributions of multi-lobe BRDFs with a mix of
Gaussian, cosine, or vMF lobes [Tan et al. 2005, 2008; Xu et al. 2017].

Alsoworth noting is thework byHeitz et al. [2015] that introduces
the SGGXmicroflake distribution to efficiently model anisotropic mi-
croflake participating media and prefilter the distribution of visible
normals. The recent self-shadow microflake model further builds
on SGGX by taking into account occlusions inside a volume for
the application of downsampling [Loubet and Neyret 2018; Loubet
2018]. Such microflake models are often applied for prefiltering ag-
gregate detail, but with a focus on a specific subset of cases such as
foliage [Max et al. 1997; Loubet and Neyret 2017], fabric [Schroder
et al. 2011; Zhao et al. 2011, 2013, 2016], hair [Moon et al. 2008], or
granular materials [Meng et al. 2015; Müller et al. 2016].

A common issue with these models is that, although they are fast,
they have a relatively simplistic underlying reflectance or phase
function that cannot faithfully capture effects such as specularities
or glossy reflections. Meanwhile, our approach better preserves the
appearance by more accurately representing the true reflectance
obtained through standard ray tracing.

Hybrid techniques. Far voxels [Gobbetti and Marton 2005] is among
the first hybrid approaches and it combines different representa-
tions based on scale, often relying on geometry for finer scales and
volumetric representations at coarse scales. The recent approach by
Loubet and Neyret [2017] is the first fully hybrid system that can
do heterogeneous simplification of an asset at a given scale by per-
forming analysis on a surface mesh to label portions as candidates
for either geometric simplification or a voxelized volumetric model.

Our framework avoids the difficult problem of trying to unify the
two representations [Dupuy and Heitz 2016] or selecting between
them (i.e., either a simplified geometry or a volumetric voxel) and, as
a result, we can handle the continuum of in-between cases, as shown
in Fig. 2. Noma [1995] also sought to bridge this gap to preserve
the appearance of collections of surfaces using volume textures to
enable rendering such assets both closeup and far away on multi-
resolution displays. Surfaces containing rough detail or holes are
difficult to accurately classify with heuristics and cannot be properly
represented in an appearance-preserving way by exclusively relying
on either prefiltering model. We use only a single representation
that bakes out the appearance and bypasses such issues.

Visibility. Accounting for visibility is important for determining
occlusions and shadows in level of detail applications. For exam-
ple, Meyer et al. [2001] utilize a visibility cube map correspond-
ing to each level detail to enable shadowing on trees. Coverage
maps [Lokovic and Veach 2000] have been used to track visibility
for anti-aliasing [Crassin et al. 2018]. We similarly employ coverage

maps to handle the transmittance for the multitude of scenarios that
are potentially encountered when rendering a prefiltered asset.

Recent approaches. Some recent approaches target prefiltering for
certain materials and effects. For example, Wu et al. [2019] jointly
prefilters displacement-mapped surfaces and their BRDFs to pre-
serve their appearance along with shadows and interreflections.
Meanwhile, Gamboa et al. [2018] capture high frequency lighting
effects for global illumination by using an appearance model that
can tractably account for micronormal variation.

2.3 Machine learning
Background. Machine learning using neural networks has exploded
in popularity since its demonstration as a practical solution for
image-based classification [Krizhevsky et al. 2012]. Since then, they
have achieved state-of-the-art results in countless applicationswithin
the fields of computer vision and graphics, among others. See recent
texts [Goodfellow et al. 2016] for a more detailed background.

For graphics applications. Learning-based approaches have been
successfully applied to Monte Carlo (MC) denoising [Kalantari et al.
2015; Bako et al. 2017; Chaitanya et al. 2017; Vogels et al. 2018].
We too apply this concept to denoise our phase functions which
are undersampled to save on computation (see Fig. 11). Machine
learning approaches are used to capture global illumination for re-
lighting [Ren et al. 2013, 2015], evaluate complex luminaires [Zhu
et al. 2021], represent sky models [Satỳlmỳs et al. 2017], render
clouds [Kallweit et al. 2017], handle multiple scattering in partic-
ipating media [Ge et al. 2018] and subsurface scattering [Vicini
et al. 2019], synthesize materials [Zsolnai-Fehér et al. 2018], gen-
erate glints [Kuznetsov et al. 2019], and to perform the rendering
itself [Granskog et al. 2020, 2021]. We also utilize networks to render
similar anisotropic view-based effects such as glints, but without
relying on approximate appearance models. Takikawa et al. [2021]
focus on LoD for the reconstruction of implicit geometry repre-
sented through signed distance functions. Kuznetsov et al. [2021]
leverage neural networks that are functions of incoming and outgo-
ing directions, but they focus on learning complex, precomputed
material responses that can then be mapped onto meshes. On the
other hand, our approach learns the entire phase function across
voxelized representations of the scene capturing the full appearance
including materials, geometry, and occlusions.

Finally, neural networks have been applied for lightfield view syn-
thesis [Kalantari et al. 2016; Wang et al. 2017; Mildenhall et al. 2019]
and dense reconstruction of sparse lightfield videos [Bemana et al.
2019]. In particular, the seminal work by Mildenhall et al. [2019]
created the NeRF architecture, which poses the view synthesis ap-
plication as an optimization over a volumetric scene function using
sparse RGB inputs. The resulting network can be queried by a 5D co-
ordinate over spatial location and viewing direction. The novel take
on view synthesis coupled with its state-of-the-art results inspired
a large research field exploring NeRF-like architectures to further
improve performance and quality. For example, Liu et al. [2020] use
a sparse voxel representation to discard irrelevant parts of the scene
and learn simpler local properties. The Mip-NeRF system [Barron
et al. 2021] renders anti-aliased conical frustums across scales rather

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:5

than individual rays. Our work shares some similarities including
the multi-scale, sparse voxel representation that integrates over the
pixel footprint, but ours additionally supports relighting. Recent
NeRF approaches now support relighting including NeRF-Tex [Baatz
et al. 2021], which captures texture information within the networks
that can be applied to a mesh. NeRV [Srinivasan et al. 2021] also
supports relighting but only focuses on large watertight surfaces
and cannot represent small microgeometry. Furthermore, the recon-
struction does not have high fidelity to the reference nor does it
support LoD.

For embedding and compression. A subset of approaches, including
some in graphics, use networks to encode or compress the input
data into a latent representation [Hinton and Salakhutdinov 2006].
A decoder network could act on this compressed representation,
commonly referred to as a latent feature vector, to reconstruct the
data or a subset of the data. For example, Miandji et al. [2013] com-
press light fields for real-time global illumination, while Chen et
al. [2018] and Kang et al. [2018] encode reflectance capture. Further-
more, encoding networks are used for appearance models for face
rendering [Lombardi et al. 2018], image-based relighting from opti-
mal sparse samples [Xu et al. 2018], and appearance maps [Maximov
et al. 2019]. See a recent survey [Dong 2019] for more details.

Recently, a related approach compresses the bidirectional texture
function (BTF) with a neural network [Rainer et al. 2019] utilizing
an encoder/decoder architecture. This method similarly queries a
latent vector to directly obtain the appearance for specific view
and lighting directions. Inspired by such embedding approaches,
we compress/encode our voxel data to keep storage sizes tractable
and to practically decode the data during runtime for appearance
prefiltering. Rainer et al. [2019] use a compression network per
BTF, while in our framework we use a single network per scene,
each of which has on the order of one million voxels with different
properties and effects captured within each. After training, our
decoder networks are subsequently utilized by a beam tracer, rather
than a typical ray tracer, to efficiently evaluate the contribution of
voxels falling within a pixel’s footprint.

3 PREFILTERED LIGHT TRANSPORT
We now present the theoretical framework for our prefiltering ap-
proach. Since we use volumetric structures, we begin with the Radia-
tive Transfer Equation (RTE) [Chandrasekhar 1960] in its integral
form for volumetric rendering:

𝐿(x, 𝜔) =
∫ x

y
𝜏 (x̂, x)

[
𝜀 (x̂) + 𝜎𝑠 (x̂)

∫
4𝜋

𝑓𝑝 (x̂, 𝜔, 𝜔̂)𝐿(x̂, 𝜔̂) d𝜔̂
]
dx̂

+ 𝜏 (y, x)𝐿(y, 𝜔), (1)

where 𝐿 is the radiance at a point in a particular direction, x is a
position in the volume, 𝜔 is the outgoing direction, y is a point on
the volume boundary, 𝜀 is the emission at every point, 𝜎𝑠 is the
scattering coefficient, 𝑓𝑝 is the phase function, and 𝜏 models the
transmittance by accounting for absorption and out-scattering.

After expanding the products out, we can see three distinct terms
in the equation:

Light source

Volume

Camera

in [0]

out [0]

out [1]

in [1]

Fig. 3. Our approach prefilters the appearance of an asset by treating it as
a voxelized volume through which we trace rays to integrate over a pixel’s
spatio-angular footprint (denoted by the blue beam). We determine the light
reaching the camera sensor according to the volume rendering equation, but
with precomputed terms used to calculate the amount of light propagated
across each voxel’s boundary, indicated by the in and out labels.

𝐿(x, 𝜔) =
∫ x

y
𝜏 (x̂, x)𝜀 (x̂) dx̂

+
∫ x

y

∫
4𝜋

𝜏 (x̂, x)𝜎𝑠 (x̂) 𝑓𝑝 (x̂, 𝜔, 𝜔̂)𝐿(x̂, 𝜔̂) d𝜔̂ dx̂

+ 𝜏 (y, x)𝐿(y, 𝜔) . (2)

The first term is the contribution from emission, the second term is
the in-scattered light, and the last term corresponds to the volume’s
boundary condition, which we call 𝐿𝑏 for brevity.

If we discretize the volume into a set of voxels, 𝑉 , and define the
subset 𝑉xy = {v ∈ 𝑉 | x ≤ v𝑎 ≤ y} where 𝑎 is a point inside the
voxel (i.e., the set of all voxels that lie in the interval [x, y]), we can
rewrite the previous equation as a sum of integrals:

𝐿(x, 𝜔) =
∑
v∈𝑉xy

∫ v𝑜

v𝑖
𝜏 (x̂, x)𝜀 (x̂) dx̂

+
∑
v∈𝑉xy

∫ v𝑜

v𝑖

∫
4𝜋

𝜏 (x̂, x) 𝑓 (x̂, 𝜔, 𝜔̂)𝐿(x̂, 𝜔̂) d𝜔̂ dx̂

+ 𝐿𝑏 (y, x, 𝜔), (3)

where 𝑓 (x̂, 𝜔, 𝜔̂) = 𝜎𝑠 (x̂) 𝑓𝑝 (x̂, 𝜔, 𝜔̂) is used for conciseness and v𝑖
and v𝑜 refer to the in and out points of voxel v along direction 𝜔 .

To introduce the prefiltering of light transport in path space, we
follow Belcour et al. [2017] and introduce the notion of a pixel foot-
print. However, unlike this prior work, we formulate the expression
for volumes, instead of surfaces (see Fig. 3). Thus, we can determine
the final flux incident on a sensor’s pixel, 𝐿𝐼 , by integrating the
radiance incident on the sensor over the pixel filter, 𝐻𝐼 :

𝐿𝐼 =

∫
F
𝐻𝐼 (x, 𝜔)𝐿(x, 𝜔) d𝜔 dx = 𝐸 + 𝑆 + 𝐵. (4)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 • Bako, Sen, and Kaplanyan

1

0
Distance

(a) (b) (c) (d)

Fig. 4. Motivation for our mask-based transmittance model. The top half
of the figure shows a top-down view of a beam intersecting with voxels in
a scene (non-empty voxels are shown in blue, and ignored (empty) voxels
are shown with dashed gray lines), while the bottom half shows the ideal
tracked transmittance versus distance along the beam based on the micro
and macrogeometry within each voxel. (a) First, we have a large watertight
building that occludes half of the beam and the transmittance decreases to
0.5. (b) Next, the tree in this region is completely covered by the previous
building, so there is no change in transmittance. (c) The voxels contain
trees with many random, small leaves that in aggregate behave similar to a
volume, and, thus, an exponential transmittance model is suitable for this
region. (d) Finally, there are non-axis-aligned buildings. These macrosurfaces
will linearly influence the transmittance. Therefore, in such a typical scenario,
no single traditional transmittance model is entirely appropriate, so we
instead utilize a spatial coverage mask to track the occlusions along the
beam and determine the radiance contribution of each voxel.

Here F is the spatio-angular footprint of pixel 𝐼 , as similarly defined
in Belcour et al. [2017], which is introduced to integrate over image
positions and visible directions within the extent of the pixel. Using
the three terms of Eq. 3 in place of𝐿(x, 𝜔) yields the filtered emission,
scattering, and boundary terms (defined as 𝐸, 𝑆 , and 𝐵, respectively),
which we discuss in turn.

Boundary term. The propagated radiance received at the volume’s
boundary is simply multiplied by the pixel filter and is given by:

𝐵 =

∫
F
𝐻𝐼 (x, 𝜔)𝐿𝑏 (y, x, 𝜔) d𝜔 dx. (5)

Therefore, even though our framework prefilters an asset by treating
it as a volume, it can be plugged into existing hybrid renderers and
will properly transport incoming radiance through the volume. Thus,
in practice, the integral in Eq. 5 would be evaluated with distributed
ray tracing [Cook et al. 1984].

In-scattering term. We next apply our pixel filter to the in-scattering
term and rearrange it to get:

𝑆 =
∑
v∈𝑉xy

∫
F
𝐻𝐼 (x, 𝜔)

∫ v𝑜

v𝑖

∫
4𝜋
𝜏 (x̂, x) 𝑓 (x̂, 𝜔, 𝜔̂)𝐿(x̂, 𝜔̂) d𝜔̂ dx̂ d𝜔 dx.

(6)

We then apply the far-field assumption commonly used in prefilter-
ing (i.e., we assume the voxel is sufficiently far away and the rays
in the beam are near parallel), so the incident radiance 𝐿(x̂, 𝜔̂) be-
comes constant across voxel v (i.e., in the range [v𝑜 , v𝑖]), and we can

parameterize it as 𝐿(v, 𝜔̂), which represents the radiance arriving at
the corresponding voxel v. After rearranging the integral, we have:

𝑆 =
∑
v∈𝑉xy

∫
4𝜋
𝐿(v, 𝜔̂)

∫
F
𝐻𝐼 (x, 𝜔)

∫ v𝑜

v𝑖
𝜏 (x̂, x) 𝑓 (x̂, 𝜔, 𝜔̂) dx̂ d𝜔 dx d𝜔̂ .

(7)

Note that 𝜏 (x̂, x) is parameterized relative to the point in the volume
x, not the voxel boundary v𝑜 , so it could be outside the voxel v. This
poses a potential obstacle to our prefiltering application, as 𝜏 (x̂, x)
cannot be reasonably precomputed, unless we can factor 𝜏 into the
portion inside and outside the voxel:

𝜏 (y, x) = 𝜏 (y, v𝑜)𝜏 (v𝑜 , x) . (8)

This is a reasonable assumption which holds true for the widely-
used exponential transmittance with the extinction coefficient, 𝜎𝑡 ,
given by the sum of the absorption and scattering coefficients (i.e.,
𝜎𝑡 (x) = 𝜎𝑎 (x) + 𝜎𝑠 (x)):

𝜏 (y, x) = exp(−
∫ x

y
𝜎𝑡 (x̂) dx̂)

= exp(−
∫ v𝑜

y
𝜎𝑡 (x̂) dx̂) exp(−

∫ x

v𝑜
𝜎𝑡 (x̂) dx̂) = 𝜏 (y, v𝑜)𝜏 (v𝑜 , x) .

(9)

Thus, using Eq. 8, we can rewrite the scattering term as:

𝑆 =
∑
v∈𝑉xy

∫
4𝜋
𝐿(v, 𝜔̂)

∫
F
𝐻𝐼 (x, 𝜔)𝜏 (v𝑜 , x)

∫ v𝑜

v𝑖
𝜏 (x̂, v𝑜) 𝑓 (x̂, 𝜔, 𝜔̂) dx̂ d𝜔 dx d𝜔̂

≈
∑
v∈𝑉xy

∫
4𝜋
𝐿(v, 𝜔̂) 𝑇 (v𝑜 , x) 𝐹 (v, 𝜔, 𝜔̂) d𝜔̂ . (10)

The approximation stems from splitting the integral of the product
as the product of the integrals to obtain our prefiltered transmittance
function, 𝑇 , and our prefiltered phase function,1 𝐹 , given by:

𝑇 (v𝑜 , x) =
∫
F
𝐻𝐼 (x, 𝜔)𝜏 (v𝑜 , x) d𝜔 dx, (11)

𝐹 (v, 𝜔, 𝜔̂) =
∫
F
𝐻𝐼 (x, 𝜔)

∫ v𝑜

v𝑖
𝜏 (x̂, v𝑜) 𝑓 (x̂, 𝜔, 𝜔̂) dx̂ d𝜔 dx. (12)

Since the prefiltered phase function is integrated over the in and
out points of the voxel, v𝑖 and v𝑜 , and the spatial footprint, x, we
parameterize it over voxel v and the incoming and outgoing direc-
tions, 𝜔̂ and 𝜔 . Note, by splitting the integral product and applying
our transmittance separation (Eq. 8), the prefiltered transmittance,
Eq. 11, includes the transmittance from v𝑜 to x, while the prefiltered
phase, Eq. 12, accounts for the transmittance through a point in the
voxel, x̂, to the corresponding voxel boundary, v𝑜 . Although it is
possible to avoid this assumption and preserve the integral of the
product of transmittance and the prefiltered phase function, this
adds substantial costs to the precomputation, as we would have to
store the prefiltered phase function across two extra dimensions
corresponding to the pixel’s spatial footprint in order to evaluate

1This is a slight abuse of notation as it is really the phase function, 𝑓𝑝 , multiplied by
the transmittance, 𝜏 , and scattering coefficient, 𝜎𝑠 , across a voxel, but it can still be
thought of as the 4D throughput over incoming outgoing directions.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:7

the exact integral during runtime. Furthermore, we found this ap-
proximation worked well in practice (see Fig. 15) and use Eq. 10
in our system. At runtime, we simply sum over all the voxels in
a pixel’s footprint and attenuate the incoming radiance over the
sphere by the scalar voxel-to-voxel tracked transmittance, 𝑇 (v𝑜 , x),
and the stored prefiltered phase function, 𝐹 (v, 𝜔, 𝜔̂).

Note that this scattering term is a general equation that works re-
cursively to propagate indirect illumination back to the camera sen-
sor, similar to Belcour et al.’s [2017] surface formulation. Although
multiple bounces are theoretically supported with our prefiltering
framework, we focus on demonstrating results for the first bounce,
as that is typically the most susceptible to objectionable artifacts.

Emission term. The pixel filter applied to the emission term yields:

𝐸 =
∑
v∈𝑉xy

∫
F
𝐻𝐼 (x, 𝜔)

∫ v𝑜

v𝑖
𝜏 (x̂, x)𝜀 (x̂) dx̂ d𝜔 dx

≈
∑
v∈𝑉xy

𝑇 (v𝑜 , x) 𝐺 (v, 𝜔), (13)

where we apply the split in transmittance, 𝜏 , as before using Eq. 8.
Similarly to our scattering term, we approximate the integral prod-
uct over the pixel footprint to obtain 𝐺 , our prefiltered emission:

𝐺 (v, 𝜔) =
∫
F
𝐻𝐼 (x, 𝜔)

∫ v𝑜

v𝑖
𝜏 (x̂, v𝑜)𝜀 (x̂) dx̂ d𝜔 dx. (14)

This means that we can precompute the contribution from internal
emitters and then track the voxel-to-voxel transmittance during
runtime to determine the final contribution at the pixel sensor. Al-
though our framework supports prefiltered emissions, this is less
common and our scenes did not contain any internal emitters, so
we omit this term from subsequent discussion.

Transmittance. Since an exponential transmittance is not suitable for
watertight surfaces and neither is a simple linear one for aggregates
(see Fig. 4), we utilize a more appropriate numerical transmittance
model. Specifically, in the spirit of deep shadow maps [Lokovic and
Veach 2000] and previous SVO-based prefiltering approaches [Heitz
and Neyret 2012], we use a 2D spatial coverage mask to numerically
model different transmittance modes along the beam:

𝑇 (y, x) =
∫
F
𝐻𝐼 (x, 𝜔)𝜏 (v𝑜 , x) d𝜔 dx ≈ 1

𝑁

𝑁−1∑
𝑗=0

Λ 𝑗 (y, x), (15)

where 𝑁 is the number of pixels in our coverage mask and Λ 𝑗 (y, x)
is the tracked coverage from x to y at the 𝑗 th pixel. The general
tracked coverage is then given by:

Λ 𝑗 (y, x) =
1 −

∑
v∈𝑉xy

Λ 𝑗 (v𝑜 , x)
 𝛼 𝑗 (v [y], x), (16)

where𝑉xy is the ordered set (closest to x first) of all voxels that over-
lap the interval x to y and Λ 𝑗 (x, x) = 0. Meanwhile, 𝛼 𝑗 (v [y], x) is
the 𝑗th pixel of the coverage mask corresponding to the voxel at
y in the direction towards x, and which lies in the range from 0
(transparent) to 1 (blocked). Fortunately, we are able to precompute
the coverage mask at each voxel, 𝛼 , during the preprocessing step,

so only the tracked coverage, Λ, needs to be computed at runtime.
Essentially, we sum over all of the contributions of the voxels in
order up until the edge of the current voxel containing y. Since∑
Λ 𝑗 (v𝑜 , x) ∈ [0, 1], we subtract this from 1 to determine the maxi-

mum amount of contribution this voxel can have. Finally, we mul-
tiply this weight by the coverage of the current voxel, 𝛼 𝑗 (v [y], x),
to determine its final contribution.

4 NEURAL PREFILTERING

4.1 Framework overview
This section discusses our implementation based on the theory from
Sec. 3. We describe our general pipeline (see Fig. 5) starting with the
original scene as an explicit mesh and materials to the intermediate
prefiltered representation and, finally, the rendered image.

Spatial representation. We chose a sparse hierarchical voxel repre-
sentation that directly corresponds to the level of detail (LoD) scales.
Specifically, for a given scale, we perform uniform discretization in
world space (i.e., 𝑥 , 𝑦, and 𝑧 coordinates) and then we double the
resolution of our voxelization in each dimension for each subse-
quent, higher scale. In this way, LoD scale 𝑖 , contains 8𝑖 total voxels
(before considering sparsity). During rendering, the filtering kernel
(such as the pixel footprint and pixel filter) determines which LoD
scale is used so that the relative size of a voxel does not exceed
the bandlimiting frequency of the filtering kernel.2 In other words,
similarly to texture filtering, the further away the camera is from
the asset, the coarser the LoD scale that is used since a pixel will
map to an increased portion of the scene and larger voxels.
As in Heitz et al. [2012], we use a sparse voxel octree (SVO)

representation at each scale, which discards empty voxels and allows
for efficient voxel lookups. Each voxel contains both the prefiltered
phase function, 𝐹 , and 2D coverage mask, 𝛼 , introduced in Sec. 3,
and an albedo term, which are each described in turn.

Phase function. In general, a phase function is a dimensionless mea-
sure of how light is scattered at a point in a volume, typically pa-
rameterized by incoming and outgoing directions. Thus, each one of
our voxels has a different phase function based on how light propa-
gates through it. We represent the prefiltered phase function, 𝐹 from
Eq. 10, as a high-resolution uniform grid that maps to a 4D parame-
terization of input and output directions as spherical coordinates:
𝜔𝑖 = (𝜃𝑖 , 𝜙𝑖) and 𝜔0 = (𝜃0, 𝜙0). Each index of this table is a single
monochromatic value of the voxel’s phase function corresponding
to direction pairs that map to that index. This information can be
queried during rendering and multiplied with a similarly queried
base color, described next, to find the radiance contribution of each
voxel based on view and lighting directions.

Albedo. In addition to the monochromatic phase function, we record
the albedo, the average RGB base color (i.e., the average diffuse
color across the geometry’s projected cross-section) of the phase
function in a specific outgoing direction. The 2D directional albedo
is decoupled from the phase to reduce storage costs of a voxel
during precomputation and also as a means of helping the network

2Typically, LoD approaches even use the next finer scale to so that the voxels are
sub-Nyquist resolution.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 • Bako, Sen, and Kaplanyan

Scene to prefilter

Voxelization Data generation Network training (Fig. 6)

Precomputation Runtime

Rendering

R
ay

 tr
ac

er

Encoder Decoder

Latent Output

S
ca

le
 0

S
ca

le
 1

Vo
xe

l 0
Vo

xe
l 0

Scale 0 Scale 1 Scale 2

LatentSVO traversal Decoder

C
ov

er
ag

e

A
lb

ed
o

P
ha

se

(For every scene) (For every voxel) (For every scene)

Fig. 5. Overview of our algorithm. We first voxelize the scene at multiple scales and store non-empty voxels in a sparse voxel octree (SVO). Next, in the
data-generation step, we process the portion of the scene within each voxel in isolation and sample incident and outgoing directions using a ray tracer to
record the phase (i.e., the throughput), coverage, and albedo information across the volume. We then train a single network to efficiently compress this
per-voxel data into small latent feature vectors that can be unpacked by a lightweight decoder. During rendering, for each voxel intersected by our beam along
a pixel’s footprint, we evaluate the phase, albedo, and coverage by decoding the precomputed latent representations for specific incident and outgoing query
directions from a light transport algorithm to generate an image. Note that during rendering, we use only SVO traversals and inference of our pretrained
networks and have no reliance on the original geometry or materials of the scene.

optimization. By learning a single value per direction for the albedo,
the phase sub-network does not have to learn to reproduce the
same base color for a given outgoing direction at all the incident
directions and instead it just learns to reproduce the more coherent
monochromatic data. The albedo sub-network predicts a single RGB
color per direction, which then multiplies the phase. Thus, our full
phase function with RGB values is given by:

𝐹 (v, 𝜔, 𝜔̂) = 𝜌 (v, 𝜔, 𝜔̂)𝛾 (v, 𝜔), (17)

where 𝜌 and 𝛾 are the scalar monochromatic phase and RGB base
albedo, respectively. Note that 𝛾 is parameterized over the outgo-
ing direction only (2D spherical coordinates), unlike 𝜌 which uses
both outgoing and incoming directions (4D spherical coordinates).
Moreover, we chose to represent only the diffuse albedo and leave
explorations in additionally utilizing a specular color for future
work. By using only a single scalar per direction for albedo, we do
not account for different contributions of spatially varying textures,
as these contributions are averaged out in each outgoing direction
(see limitations in Sec. 7). Furthermore, we do not track color corre-
lations from voxel to voxel, but we do spatially track transparency.

Coverage mask to approximate non-exponential transmittance. Our
transmittance model is used to determine the contribution of a voxel
based on its correlation with preceding voxels along the path to the
camera. If two voxels are 100% negatively correlated, it means that
neither voxel is blocked by the other and the contribution of each is
simply added. If the voxels are 100% positively correlated, it means
that one voxel completely blocks another one behind it, and, thus,
the second voxel has no contribution. Note, there can be varying
degrees of correlation that create a spectrum of cases (see Fig. 4).
We determine each voxel’s coverage with a fixed-resolution 2D

spatial mask, 𝛼 , per particular viewing direction and we compute
this for the same outgoing directions as our phase function, resulting
in a 4D table. In other words, the elements of our table are indexed
by a particular view, and the element itself is the voxel’s 2D coverage
mask. The 2D tracked coverage, Λ, is determined during runtime
based on the 2D precomputed, per-voxel coverage mask, 𝛼 , as shown
in Eq. 16. To determine the contribution of a given voxel, we compute
the proportion of its coverage mask that remains unoccluded based
on the beam’s tracked coverage mask so far. We found our approach

was sufficient for the scenes we evaluated, but it would be interesting
to utilize recent models in our framework [Vicini et al. 2021].
Rendering with a prefiltered representation. We implement a single-
bounce renderer (direct lighting only) to demonstrate the directly
visible quality of our prefiltered scene representation.We use a beam
tracer that traverses our SVO and determines the ordered set of
voxels using the intersection distance of a beam originating at each
pixel. From the phase and albedo, it determines the RGB throughput
in a given incoming/outgoing direction based on the scene’s camera
and lighting setup (Eq. 17) and evaluates the prefiltered scattering
term in Eq. 10. The 2D coverage mask, 𝛼 , is used to track correlations
across voxels to compute the transmittance along the beam with
Eq. 15, while Eq. 4 determines the final radiance accumulated along
the beam to a given pixel. Note, our current scenes have no emissive
surfaces, so the filtered emission term, 𝐸, is ignored.

4.2 Prefiltering and data generation
During data generation, we compute the phase function, albedo,
and coverage mask for each voxel at every LoD scale. We normalize
the scene by the largest dimension and then consider a unit volume
bounding box around the scene. We then perform voxelization and
construct our SVO before proceeding to compute each voxel’s data.

We represent our phase function as a 4D table indexed by spher-
ical coordinates corresponding to a pair of incoming/outgoing di-
rections and where each element in a bin corresponds to a scalar
monochromatic throughput. In other words, if viewing the scene
from a given outgoing direction, each bin corresponds to how much
light is reflected towards the camera for a given incoming direction.

To compute the value at each bin (a 4D index of incoming/outgoing
directions) of a given voxel, we measure the throughput by sending
many samples with a ray tracer in a specific view direction and
recording each sample’s eventual exit direction from the voxel’s
volume, as well as its accumulated radiance. Specifically, we first set
up a constant environment map with a value of one everywhere (i.e.,
a white furnace) and sample the projected cross-section of the scene
from various outgoing directions using an orthographic camera, so
that all samples are intersecting the voxel with the same direction.
The samples bounce around in the voxel until they ultimately exit
by hitting the environment map. We use MIS sampling within a
voxel and record the corresponding incident radiance and direction
for the light sample at each bounce.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:9

Once a sample terminates, we accumulate the radiance in the
corresponding bins based on the view (outgoing direction) and the
exit or light sample directions (incoming direction). After all the
samples for this outgoing direction are recorded, we normalize each
bin by the total sample count. We then calculate this for all outgoing
directions based on our table’s resolution. Note we sample outgoing
directions uniformly along the sphere rather than uniformly in the
grid to avoid bias from bins mapping to different solid angles. To
ensure that the entire voxel gets properly sampled at each outgoing
direction, we sample the entire projected cross section and discard
any samples that do not go through the bounding box of the voxel.

At the same time we generate samples of our phase function, we
also construct our 2D coverage mask, 𝛼 , and directional albedo, 𝛾 .
When processing each sample and binning them, we can use the
cross-section sample location to find the corresponding texel in our
fixed-resolution coverage mask (e.g., 16× 16 in our implementation)
and deposit either a 1 or a 0, based on whether the sample inter-
sected any geometry within the voxel. We average this visibility
information at each texel to generate the final supersampled 2D
coverage mask corresponding to the processed outgoing direction.
To compute the albedo, we average the base color from each phase
function sample that intersected voxel geometry (i.e., those samples
with a value of 1 for visibility). In other words, we integrate the
albedo over the area of the voxel’s projected cross-section along a
given view direction and record a single RGB value at the 2D index.

4.3 Neural compression
Although baking out the phase function, albedo, and coverage mask
into our tables should be sufficient to render an image with high
fidelity to the original, there are various considerations that make
this straightforward approach impractical. First, since these tables
need to have a reasonably high resolution to be able to reproduce
the original appearance, each voxel has a significant amount of
data associated with it (i.e., on the order of MBs). Moreover, typical
pipelines utilize several scales of LoDs for their assets which can
amount to millions of voxels at the finer scales, even when consider-
ing sparsity (i.e., we can ignore empty voxels), totaling TBs of data
for a single scene, which would undermine the savings relative to a
brute-force ray tracer. Another issue is that the tables must be com-
puted for directions at a high resolution to minimize approximation
errors stemming from interpolating the non-computed views.

To be able to get a high compression rate and to more accurately
interpolate non-calculated views, we propose to use a deep neural
network solution. Specifically, the network takes in the full gener-
ated dataset and encodes it into a latent representation, a common
strategy in the machine learning community, that is orders of mag-
nitude smaller than the dataset size. The network includes a decoder
that extracts the desired elements from the latent vector at run-
time. A network-based solution allows substantial compression as
is shown in previous work [Rainer et al. 2019]. Furthermore, we
have the added benefit that network can perform more accurate,
non-linear interpolation for views that were not precomputed.
After the network is trained, we incorporate it into our pipeline

with a preprocessing step that encodes all the voxels in a scene at all
the scales and generates their latent feature vectors, which are stored
on disk. Prior to rendering, we load all of these vectors into memory,

along with the decoder network and its trained weights. During
rendering, for every intersected voxel, the beam tracer evaluates
the decoder using the voxel’s latent vector and a specific query
direction based on the outgoing and incident directions to generate
the corresponding element. Finally, we combine all the voxel data
to synthesize the final image, as described in the previous sections.

We now describe the specifics of our system’s neural networks.

5 NETWORK DESIGN AND UTILIZATION
Our networks first must be trained offline on the precomputed data
described in Sec. 4. The networks are trained across all the voxels
for a specific scene. During prefiltering, compressed representations
in the form of latent vectors are precomputed for all the voxels
using the converged, frozen weights of the networks. Finally, during
rendering, we evaluate a subset of the networks and apply the
equations from Sec. 3 to generate the final image. In this section,
we describe our network architecture and optimization, followed by
its use during runtime, and conclude with implementation details.

5.1 Compression networks
We use four networks in our system, as shown in Fig. 6. In general,
all networks act as compressors/decompressors with a “butterfly,”
or U-Net style, encoder and a lightweight decoder architecture. The
networks are trained per scene, not per voxel. In other words, these
four networks are trained to handle the encoding/decoding of the
millions of voxels across all of the scales of a given scene. We now
describe their specific uses and subtle differences.

Encoders. The goal of the encoders is to generate a compact la-
tent representation of the various prefiltered input data to be able
to efficiently store and access this information in each voxel dur-
ing rendering. Using the raw prefiltered input can quickly become
intractable. Fortunately, the input plenoptic data has plenty of co-
herence that can be effectively compressed with a network.
The encoders are made up of convolutional neural networks

(CNNs) that operate on 2D slices of the original data. The use of
convolutional encoders is also present in the architecture of Rainer
et al. [2019]. For example, for the phase encoder and a given outgoing
direction, we take the throughput for all incoming directions and
arrange them into a uniform 2D grid corresponding to their spherical
coordinates, 𝜔𝑖 = (𝜃𝑖 , 𝜙𝑖). These 2D grids can be viewed as separate
images, one for each outgoing direction, that are all sent to the
encoder to be processed one at a time. Thus, our input is 𝑁 ×𝑁 × 𝑘 ,
where 𝑁 is the grid resolution of our table in a single dimension
and 𝑘 is the number of outgoing views that are fed in. The encoders
separately process the 𝑘 slices from each viewing direction and
then concatenate each of the 𝑘 resulting latent vectors together at
the bottleneck. We found concatenating latent vectors performed
significantly better than averaging when using equal vector sizes.
In order to support both single directional queries (e.g., point

sampling light sources) and range queries to efficiently handle area
light sources (e.g., environment maps), we use two different kinds of
phase networks. During rendering, with a single inference, we can
determine the throughput for multiple directions simultaneously,
which can be used to perform the dot product with a large light
source, such as an environment map. Without such a network, we

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 • Bako, Sen, and Kaplanyan

C
on

v
+

R
eL

U

In
pu

t

FC
 +

 R
eL

U

In
pu

t

FC
 +

 R
eL

U

Encoder

Encoder
Phase decoder

V
1

r1

Phase encoder

Phase-slice encoder

Albedo encoder

Coverage encoder

Voxel ID

For every voxel

Training/pre-rendering Training/rendering

Batch of voxels

General network structure

Phase-slice decoder

Albedo decoder

Coverage decoder
C

on
ca

t

Positional encoder

Positional encoder

Positional encoder
Decoder

Fig. 6. An overview of our four networks: phase, phase-slice, albedo, and coverage. The positional encoder is an explicit function [Mildenhall et al. 2020] and
not a learned one. All our learned encoder/decoder nets compress the input data for each voxel into latent representations during a preprocess step. During
rendering, a decoder takes the latent feature vectors for active voxels along with directional queries from light transport to evaluate these functions. The phase
net returns a scalar throughput at a specific 4D direction, while the phase-slice net returns a 2D image corresponding to the throughput for incident directions
conditioned by a particular view direction. The coverage net and albedo net return a 2D coverage mask and RGB base color, respectively, conditioned by
outgoing direction. On the right is the general structure of the encoders/decoders used within the different network modules.

would have to point sample a range query, which could result in
noise and would require many calls of the point query network.

Decoders. The goal of the decoders is to accurately access elements
from the original data during rendering using the latent vectors
produced by the encoders, directional queries (both outgoing and
incoming), and voxel ID. Of course, these queries can exist anywhere
within the plenoptic data, including regions outside the available
data, requiring the decoder to be able to interpolate. At render time,
none of the original scene data (e.g., geometry and materials) is
directly available to the decoder, which requires the encoder to
compress the essential information into the latent representation.
The decoders consist of fully connected layers, as in Rainer et

al. [2019] and Mildenhall et al. [2019], that operate on flat vectors,
rather than 2D images typical of convolutional networks, which
can be efficiently evaluated during runtime. It is worth emphasizing
that the decoders only return a small subset (e.g., a single value) of
the original data corresponding to the query direction, in contrast
with autoencoders that reconstruct the full input, allowing the mem-
ory footprint to remain minimal when rendering. Thus, the phase
and albedo decoders output a scalar and RGB value, respectively.
Meanwhile, the phase-slice and coverage decoders both generate
2D images. Still, these images are conditioned by a single outgoing
direction query.

Phase networks. The phase network, takes both outgoing and inci-
dent directions as input to the decoder and provides a single scalar
throughput value, which is useful for sampling light sources. The
range query network, called the phase-slice network, will take in only
the outgoing query direction for the decoder to produce a uniform
grid containing the throughput for all incident directions at once.

The phase and phase-slice encoders take in the same data, except
we use a downsampled version of the original phase data as input to
the phase-slice encoder, since reconstructing the original resolution
at the decoder backend requires a larger, more expensive network
and would be intractable during rendering. Furthermore, we found
that using separate encoders was more effective than having the
decoders share the latent vector of a single encoder.

Input parameterization. First, we reparametrize all our input data so
that the coordinate frame is in a local space of the view direction
instead of a global world-space parameterization. This bypasses
the additional complexity of having the network learn how to shift
phase functions based on the outgoing direction. With this scheme,
all the views of a diffuse sphere would have the same orientation
for the 2D throughput across incident directions, whereas globally
they would be translated versions of each other. To facilitate train-
ing, we employ standard practice and normalize the incident and
outgoing directions and voxel ID to be between [-1,1]. Next, we
apply positional encoding on all three vectors, as in the recent NeRF
architecture [Mildenhall et al. 2020], since it helped the network
recognize patterns in the data and improved convergence time.

The latent vectors do not undergo any additional processing with
the exception that the albedo compressed representation has the
original raw albedo that was input to the encoder concatenated to
it, as we found this helped interpolation and had a low memory
overhead (only 𝑘 additional RGB values need to be stored or, in
other words, one RGB base color for each encoded view). The raw
coverage and albedo values are used as provided by the rendering
system since they are already low dynamic range (LDR).
However, our phase data is high dynamic range (HDR), which

presents two issues: 1) the influence of dark regions is lower than

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:11

that of brighter ones when using a typical ℓ1 or ℓ2 norm, and 2) high
values can produce large gradients that make network updates
unstable. To combat this, learning-based methods have applied log-
arithmic transformations [Bako et al. 2017; Vogels et al. 2018] and
gamma compression [Lehtinen et al. 2018] to reduce the gap in
range. For our system, using another alternative, the range com-
pressor, performed best. This function was applied in recent works
for high dynamic range imaging [Kalantari and Ramamoorthi 2017,
2019] and importance sampling [Bako et al. 2019], and is written as:

𝑇 (𝑥) = 𝑙𝑜𝑔(1 + 𝜇𝑥)
𝑙𝑜𝑔(1 + 𝜇) , (18)

where 𝜇 = 2 controls the degree of compression. We use our range
compressor only to preprocess the inputs to the network and leave
the reference data for training in the linear domain. In general, hav-
ing network inputs with large values negatively impacts training
and can cause exploding gradients. Indeed, we observed significantly
more stable behavior and a lower converged error after applying the
range compressor to the inputs. A similar observation was described
in Lehtinen et al. [2018], where the authors used tonemapping, albeit
using a different function, only on the inputs of their denoising net-
work for the optimization benefits and similarly kept the reference
in the linear domain.

5.2 Training
Training is performed end-to-end, with both the encoders and de-
coders trained simultaneously.

Data. To sample the outgoing directions, we use stratified sampling
to better ensure coverage over the entire sphere. This means that,
within each stratum, we generate a uniform random sample. In the
encoding step, we send 𝑘 representative views for determining the
latent encoding. For generating query samples, we sample from all
available views, including those not provided to the encoder, which
enables the decoder to generate accurate results for any direction.

We employ a continuous sampling of the space and have the data
generator running during training, which will periodically update
the data stored at each voxel using different outgoing directions.
Without this, we found the network would easily overfit to the
static views in the table and would not interpolate well to other
non-computed views. Note, generating data on the fly can mitigate
storage costs (i.e., the networks can consume new training data as
it is produced instead of placing it on disk), but this does not forego
our discretized tables for the coverage and phase-slice networks.

Loss function. For our loss, we optimize:

L = ∥𝛼 − 𝛼 ∥2 + 1(𝛼)
[
(𝜌 − 𝜌)2

(𝜌 + 𝜖)2
+ ∥𝛾 − 𝛾 ∥1 + ∥𝑃 − 𝑃 ∥2

]
. (19)

Here 𝛼 and 𝛼 denote the reference and network estimate of the
voxel coverage. Similar definitions follow for phase, 𝜌 , albedo,𝛾 , and
phase slice, 𝑃 . We use 𝜖 = 0.01 to avoid division by zero. The 1(𝛼)
is an indicator function that is on if the reference coverage, 𝛼 , has
any nonzero pixels for the current slice. There are certain views of
non-empty voxels where no coverage is detected, such as the case of
a triangle viewed along its edge. In these cases, the network estimate
of the coverage should still match the all-zero coverage mask of

the reference, but we no longer need to force the phase and albedo
networks to predict zero. Since a zero-coverage view should not
have any contribution, the indicator function allows the network
flexibility in not needing to accurately predict the remaining terms.
For the phase term, we use the relative MSE metric as defined

in Noise2Noise [Lehtinen et al. 2018], which is more robust in han-
dling HDR data by being less susceptible to outliers compared to
an ℓ2 norm. Note, as described in that work, we use the network
prediction, 𝜌 , instead of the typical reference, 𝜌 , in the denominator
to avoid biasing the expected value through a nonlinearity. For this
same reason, we avoid using the range compressor (Eq. 18) on the
reference data, which would introduce a nonlinearity that can map
small errors in the compressed domain to large errors in the linear
domain, creating noticeable problems in the final image. Thus, as
in Lehtinen et al. [2018], we train in the linear domain. Although
both the phase (𝜌) and phase slice (𝑃) are HDR, we found that the
typical ℓ2 norm performed better when generating a 2D image and
averaging across pixels, as in the phase slice 𝑃 , whereas the relative
metric was more robust for the single point queries of the phase, 𝜌 .

5.3 Prerendering and runtime
After training, we must encode voxel data into latent variables to
be utilized during the subsequent runtime rendering.

Data. First, we found it necessary to render out inference data for
each voxel, which differs slightly from our training data. We use
random views generated with our stratified sampling strategy, but
only create a single set of random outgoing directions and use
this same set for computing the data at every voxel. Using random
views at each voxel in the same manner as our training data caused
objectionable noise in the final image due to slight variations in the
latent vectors, and hence the output values, at adjacent pixels. We
also attempted using data generated with a fixed uniform stride but
found this resulted in unacceptable structural artifacts/patterns.

Encoding and prerendering. Afterwards, the encoding happens as a
preprocess step before rendering to generate and store the latent
features for each voxel, which can be interpreted as compressed
representations of the input data. After saving this vector for all
voxels, we can discard the encoder. Next, the trained weights of the
decoder are frozen and exported to inference within the renderer.

Rendering. Finally, during rendering, we look up the latent vector
and append directional information from the current render to query
with the decoder-only portion of our network to generate a specific
entry from the original tabular data. Note, the original geometry
and materials are no longer used at this stage, and all values are
computed through SVO lookups and network inference.

5.4 Implementation details
Data generation. Our framework was implemented using our own
GPU ray tracer developed with CUDA and OptiX [Parker et al.
2010] and we used a cluster of NVIDIA Volta GPUs (256 in total for
computing data and training). For each scene, a full cycle of data
generation took ~0.5 to 2 days (depending on the number of voxels).

At any given time, each voxel had 16 slices of data (where a slice
is a 2D image of the 4D light field obtained by fixing the outgoing

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 • Bako, Sen, and Kaplanyan

direction and having each pixel correspond to a different incoming
direction), each computed with 256K samples and corresponding
to different outgoing directions. Note, we found this sampling rate
sufficient for all voxels in the multi-scale hierarchy, even those
from the coarse scales despite them accounting for a larger portion
of the entire scene and potentially more complex light transport.
For each voxel, we also save out the bounding sphere around the
actual geometry (4 floats total, 1 float for radius and 3 floats for the
offset). This is another form of regularization for the data so that the
coverage masks are more uniform across slices and so the network
does not have to learn translations. Moreover, it facilitates training
by making the coverage masks larger for voxels with tiny geometry
allowing for more gradients in the coverage regions and, thus, better
optimization. Note that during runtime, we re-scale and translate
the network’s predicted coverage mask using this information to
accurately compute the transmittance.
Our uniform grid sizes are 𝑁 = 128 for the phase encoder, 𝑁 =

16 for the coverage and phase-slice encoders, and 𝑁 = 1 for the
albedo encoder (i.e., 128 × 128 and 16 × 16 images and a 1 × 1 scalar,
respectively) and they correspond to spherical coordinates for the
incoming direction. These dimensions are used for both training
and runtime. In all encoders, we use 𝑘 = 8 random views, one from
each octant of the sphere, but chosen so that samples uniformly
cover the sphere. Each of these corresponds to a different viewing
direction that is constantly updated to a new viewing direction
by the data generator to allow for a continuous sampling of the
space. Note, these views are randomly selected for each iteration
and are only used to encode the latent variable, while the point
query training samples can come from all the data available on disk
for that voxel at any given time (e.g., 16 views per voxel), not only
from the 𝑘 = 8 random views fed to the encoder. For example, for
the phase tabular data, each voxel would have 16 × 128 × 128 floats
saved on disk, which are constantly being updated with random
views by the data generator during training. We downsample the
phase-slice encoder’s input images using OpenCV’s resize function
with the area filter option.

Beam tracer. Another challenge when rendering with a beam tracer
is the common case where beams are not axis-aligned with the SVO,
so multiple voxels can fall within a beam at varying depths and
locations and with only partial contributions. To solve this issue, we
perform beam marching across sets of voxels ordered by distance,
which we call wavefronts. A wavefront consists of all the voxels in
an interval (e.g., the size of a voxel length) that overlap with the
beam. Within a wavefront group, we essentially stitch together the
coverage masks from each voxel at a given depth and splat them
onto the beam’s coverage mask, which we continue to track as we
march further along our beam. We weight each voxel’s contribution
by the proportion of area it adds to the beam. Note, the coverage
network robustly interpolates the 2D mask across continuous view-
ing directions due to our constantly updated training set (described
later in this section). This implementation, while not trivial, will be
part of our full code release upon publication. Pseudocode of our
overall algorithm can be found in Appendix B.
Furthermore, we use discrete LoDs in our system, but this can

lead to popping artifacts from abruptly switching between one

scale and another. To avoid this issue, we use standard trilinear
interpolation between the voxels in the wavefront of the current
scale and those in the next coarser scale, as is commonly done for
LoD prefiltering [Loubet and Neyret 2017]. Note, we train a single
set of networks across all of the voxels in all of the discrete scales
of a given scene, so this explicit interpolation helps avoid popping
between scales. A more systematic approach that perhaps blends
latent vectors of voxels in different scales is left for future research.

Shadow maps. To enable shadows in our current system, we capture
intra-voxel and inter-voxel shadowing. For the former, we can save
each voxel’s precomputed data with self-shadowing accounted for.
For example, if two triangles are inside a given voxel, certain lighting
and view directions can result in one triangle occluding the other.
We incorporate this local shadowing into our data generation step.

On the other hand, to capture global shadowing, we make use of
the common strategy of shadow maps [Williams 1978]. Specifically,
we first render the depth of the directly visible voxels from the direc-
tion of each light source as a pre-process. In the case of environment
maps, we compute a shadow map for each direction corresponding
to the bins of the low resolution grid used in our phase-slice network
(center of the bin was sufficient in practice). All surfaces that are
directly seen from the light source can potentially have a radiance
contribution, while those surfaces that are not visible will be in
shadow. Then during final rendering, while accumulating the con-
tribution of each voxel during beam marching, we use the voxel’s
world coordinates to project to each light’s coordinate system and
look up the voxel’s depth at the corresponding pixel of the light’s
shadow map. If the current voxel’s depth is greater than the depth
in the shadow map then the voxel is occluded and does not have a
radiance contribution at the current pixel being rendered.

Networks. We implemented our networks in TensorFlow [Abadi et al.
2015] and used Xavier normal initialization [Glorot and Bengio 2010]
and the Adam [Kingma and Ba 2014] optimizer with a learning rate
of 3.0×10−4 and mini-batches of 1 voxel with 4096 queries. Training
took ~2 days, on average. For more efficient inference, we used the
TensorRT library within our renderer to evaluate the decoders with
the trained weights at the query directions.
For the CNN encoders, we start with a relatively small number

of feature channels in the input layer (e.g., 8 for the phase encoder),
but then double the layer size after each subsequent reduction of the
spatial resolution (clipped to be a maximum of 256 channels). The
spatial downsampling was performed with strided convolutions,
which performed better than average or max pooling, and ReLU
was used for the activation function on all layers except the output
layer, which was linear. After concatenating the encodings of all
the views, each encoder outputs its final latent vector of 256 floats.

The decoder networks all consisted of three residual blocks (each
block has two layers of non-linearity) with ReLU activation func-
tions and differed only in the output layer. The coverage decoder
used a sigmoid output activation, whereas the other networks used
a linear activation, as is common practice.

All networks employed residual connectionswhere possible (when
layer count and spatial dimension matched) to mitigate general
optimization pitfalls, such as vanishing gradients, which thereby
helped reduce convergence time. Finally, we train the networks from

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:13

Cutlery 598,032 Oak 12,589,056
Mossy Rock 5,996,334 Forest 53,948,550
Parking Lot 24,165,771 Stormtrooper 175,986
City 87,433,857 Army

Table 1. Number of triangles for each scene in the paper.

scratch, as we found no noticeable improvements when pretraining
an autoencoder architecture to stabilize the encoder weights before
using transfer learning with the final decoder architecture.

Regarding our memory requirements, we store voxel ID (1 float),
bounding sphere information (4 floats), and a latent vector (792
floats total consisting of 256, 256, and 280 floats from the phase or
phase-slice, coverage, and albedo encoders, respectively) at each
voxel, making the memory size 797 floats, just over 3 KB per voxel.3
If we used all four sub-networks (i.e., both the phase and phase-slice
networks, not just one), for example when using point light sources
together with an environment map, then the vector would be 1048
floats or 4 KB. All of the scenes in the results use only environment
maps or point light sources, so our memory estimates are based
on using 3 KB per voxel. Note, it could be possible to utilize half-
floats (i.e., 16-bit floats) instead of the 32-bit floats at various stages
throughout our pipeline for a potential 2× savings, but we leave
this optimization for future work.

6 RESULTS
We demonstrate how our method, called Deep Appearance Prefilter-
ing (or DAP), can preserve appearance for level of detail (LoD) of
previously unsupported materials, while also robustly handling het-
erogeneous cases of surfaces and volumes. Our pipeline also scales
well to assets with more complex geometric and material properties.

In our comparisons, we report mean squared error (MSE) to quan-
titatively assess the image quality with respect to the reference, and
direct readers to the interactive viewer in the supplemental to see
other metrics including the perceptually-based Structural Similarity
Index (SSIM) [Wang et al. 2004]. In addition, the supplemental has
full color images and error heat maps across all scales.
Our OptiX [Parker et al. 2010] ray tracer is used with a single

bounce to generate training data and results for the “Reference”
method. The results corresponding to “Ours” are generated with a
custom GPU beam tracer that traverses our SVOs and uses TensorRT
to inference the trained decoder networks. The beam tracer does
not have access to any geometry or materials of the original scene
and generates the image simply by evaluating the networks for an
ordered set of voxels at each pixel and combining the results using
our transmittance model described in Sec. 4.1. For all scenes, we use
the Disney BRDF, which we ported to Mitsuba [Jakob 2010] as it is
not supported out of the box.We verified that the high-sample-count,
ray-traced images generate the same results across renderers. For the
state-of-the-art comparisons in Mitsuba, we rendered 256 samples
per pixel to ensure there is no visible noise since the approaches
operate with rays. Note our approach still only has a single beam
per pixel. Our intent is to instead demonstrate the fundamental
limitations of the appearance models that our method overcomes.

3There is also a fixed cost that we include for the decoder network weights and data
structures (e.g., the SVO), but these are relatively small and negligible.

Where applicable, the methods in this section sample according
to the Nyquist frequency and utilize voxels from the next finer scale
relative to the one determined by the pixel filtering kernel to avoid
aliasing and overblurring, as is done in Loubet and Neyret [2017].
We also display difference images with respect to the reference that
are color coded from blue to red with increasing error. Finally, for all
results and methods, we include a background layer that undergoes
standard ray tracing without prefiltering, and which corresponds
to our boundary term from Sec. 3. The images in this section are
rendered at a resolution of 1024 × 1024. The complexity in terms of
number of triangles for a single instance in each of our scenes can
be found in Table 1.

6.1 Appearance models
We begin by comparing against state-of-the-art appearance models
including the symmetric GGXmicroflake distribution (SGGX) [Heitz
et al. 2015], the microfacet model with an ellipsoid normal distribu-
tion function (EGGX) [Dong et al. 2015], and the recent microflake
model with self-shadowing (MMSS) from Loubet and Neyret [2018].
For MMSS, we use the author implementation, which also included
comparisons to EGGX and SGGX. Although MMSS was demon-
strated for the application of appearance-preserving volumetric
downsampling, we compare to it here for its novel microflake model
which captures the self shadowing/occlusions that occur within a
voxel for improved accuracy relative to SGGX. Since this method
only supports a specular lobe, we also modified the original code to
include an additional ellipsoid diffuse lobe.
In general, due to their relatively simple phase functions, these

approximate models are unable capture a wide range of effects that
we highlight in Fig. 7. Note, EGGX still has access to the scene’s
mesh, while our approach, like SGGX, does not use the original
geometry and materials yet is still the most faithful to the reference.
Furthermore, since we include a diffuse EGGX lobe for MMSS, it
is also not fully volumetric. The comparisons in Fig. 7 are done
using a directional light source, so we use our phase network, which
outputs the throughput at a single point query.

The Cutlery scene shows how the previous approaches struggle
with specularities. In particular, they fail to preserve the anisotropic
highlights along the spoon which are overblurred. This scenario
has a watertight surface, so volumetric representations (SGGX and
MMSS) do not perform as well as EGGX, which uses simplified
geometric representations. Our approach does not try to fit an ap-
proximate model to this difficult scenario. Instead, it learns a sig-
nificantly more precise phase function that was captured directly
from the ray tracer, preserving the highlights. Meanwhile, in Oak,
SGGX and MMSS fail to capture the glints on the leaves, since sharp
specularities are difficult to model with microflakes.

6.2 Hybrid approaches
We compare against the author-provided implementation of the
state-of-the-art, hybrid mesh-volume approach (HybridLoD) from
Loubet and Neyret [2017] in Fig. 7. This method uses heuristics in a
mesh-based analysis to label regions of the asset as either macrosur-
faces amenable for geometric simplification and an EGGXmicrofacet
model or sub-resolution microgeometry better represented through

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 • Bako, Sen, and Kaplanyan

EGGX SGGX MMSS HybridLoD Ours Reference (16K spp)

C
ut
le
ry

MSE: 14.01×10−3 18.07×10−3 18.14×10−3 14.15×10−3 4.62×10−3

O
ak

MSE: 6.28×10−3 7.67×10−3 7.55×10−3 6.05×10−3 5.81×10−3

M
os
sy

R
oc

k

MSE: 3.60×10−3 5.56×10−3 5.56×10−3 3.65×10−3 2.25×10−3

Fig. 7. Comparisons with state-of-the-art approaches EGGX [Dong et al. 2015], SGGX [Heitz et al. 2015], MMSS [Loubet and Neyret 2018], and Hybrid-
LoD [Loubet and Neyret 2017]. For all scenes, we demonstrate higher fidelity to the ray traced reference, as can be seen in the difference images (mapped
from blue to red with increasing per-pixel squared error) and the lower MSE error. Note, only SGGX and our method do not rely on any explicit geometry or
materials for rendering. Full results can be found in the supplemental along with videos.

volumetric rendering with an SGGX microflake distribution. The re-
sults of this method for the previous scenes are included in Fig. 7 to
demonstrate that, since HybridLoD still uses established microflake
models, it will also have the same issues as described earlier with
preserving a wide range of complex effects and appearances, due to
the limitations of using an approximate model.

TheMossyRock scene showsmoss growing on a rock, creating a
rough, detailed surface on top of a large watertight mesh. The hybrid
approach misclassifies this as sub-resolution geometry that can be
rendered volumetrically, resulting in an overblurred appearance.
On the other hand, our approach avoids classification altogether
and will render the appearance more accurately. Furthermore, for
the Oak scene, the supplemental shows that for coarser scales (e.g.,
scale 7 and below), HybridLoD tends to overblur the leaves of the
tree as it relies increasingly on a volumetric representation.
In Fig. 9, the plot on the left shows the average MSE loss for all

methods for the scenes in Fig. 7 across scales from coarse (scale 4)
to fine (scale 8) corresponding to images of resolution 16 × 16 and
256×256, respectively. Note, we do not plot results for coarser scales
to ensure fairness, as previous approaches can output degenerative
meshes from their geometric simplification pipeline, which resulted
in all black images. Our approach does not rely on explicit meshes
and thus always works at all scales. Still, at the scales shown, our
method has the lowest average error relative to the other state-of-
the-art methods independently of scale.

6.3 Complex scenes
Since our framework can capture a wide range of appearances with-
out having to rely on simplification of explicit geometry or volumet-
ric microflake representations, we are able to demonstrate results on
significantly more complex scenes (see Fig. 8). In their current im-
plementations, both the HybridLoD and MMSS code base operates
on a single asset (e.g., as a texture-mapped obj) to perform the pre-
filtering and the environments shown here are extremely difficult
to model as a single asset and texture due to their complexity. On
the other hand, it is not a trivial extension to extend the algorithms
to work on a collection of assets. Thus, we only compare against
the reference ray-traced result, which we closely resemble in terms
of final image quality, but with a significantly reduced per-pixel
memory footprint. Note, the comparisons in Fig. 8 use an environ-
ment map, so we use our phase-slice network, which outputs the
throughput at a 2D slice for the particular view direction and can
be used in a dot product with the environment map to determine
the incoming radiance at all solid angles simultaneously.

Fig. 8 shows our results for four scenes at a coarse and fine scale
along with the reference renders. As shown in the color-coded dif-
ference images (closer to red is larger error), we accurately preserve
the appearance of the ray traced result. However, we do so with
only a fraction of the memory cost. Below each result, we report the
per-pixel memory footprint. For the reference, this is computed by

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:15

Scale 4 (163 grid) Scale 8 (2563 grid)
Ours Reference (16K spp) Difference Ours Reference (16K spp) Difference

Fo
re
st

Per-pixel mem. (KB): 249.2 84,368.2 5.4 361.2

Pa
rk

in
g
Lo

t

Per-pixel mem. (KB): 138.2 4,825,832.7 47.4 20,493.3

St
or
m
tr
oo

pe
r
A
rm

y

Per-pixel mem. (KB): 67.2 17,213.8 16.0 81.4

C
it
y

Per-pixel mem. (KB): 107.9 189,711.8 27.5 772.8

Fig. 8. We compare to standard ray tracing on large scenes with significant geometric and material complexity for a coarse scale (scale 4 on the left) and a finer
scale (scale 8 on the right). For example, at scale 4 the voxels divide up the scene as 16 × 16 × 16 or coarser and scale 8 divides up the scene as 256 × 256 × 256
or coarser. Our method’s output closely matches the reference, demonstrated by blue (lower error) to red (higher error) MSE difference images, at only a
fraction of the memory cost, despite not using any of the scene’s original geometry and materials. The memory consumption is reported per-pixel and is
computed for ray tracing by dividing the size of the scene (e.g., the size of the mesh and materials) by the number of active pixels for a given scale. Similarly,
for our method, we divide the total size of all of the active voxels’ latent variables by the number of active voxels (the latter is typically larger than the number
of active pixels since multiple voxels often map to a given pixel). The scenes here highlight hard-to-capture scenarios including anisotropic specularities using
the multi-lobe Disney BRDF as well as mixtures of macrosurfaces and microgeometry illuminated with an environment map. See the supplemental for the full
images, as well as videos of these scenes demonstrating our network’s ability to render temporally-smooth, anti-aliased sequences.

taking the memory size of a scene and dividing it by the number of
pixels that the scene maps to (i.e., the projection of the asset to the
image plane) when the image resolution matches the corresponding
LoD scale. To illustrate, for an axis-aligned view, the bounding box
of a prefiltered asset at LoD scale 4 would cover 16×16 pixels, while
such a view at scale 8 would be 256 × 256. Setting a certain scale
means that the voxels would be no finer than those found at that
scale. For our method, the per-pixel memory footprint is computed
by taking the number of touched voxels, multiplying by the memory
size of the voxel data, and then dividing by the number of pixels
for the scale. Note, we show our results here with instancing to

highlight the compelling cases our method could be used. In a pro-
duction setting, the tiles would correspond to different assets that
are prefiltered to make up a scene, but the savings in our per-pixel
memory footprint would persist since our approach would evaluate
roughly the same number of voxels regardless of scene complexity.
As with all LoD methods of this nature, there is an inflection

point where the benefit of prefiltering over standard ray tracing no
longer exceeds the relative cost. We can see this in the center plot of
Fig. 9, which shows the per-pixel footprint for the City scene across
scales. If the City were to fall entirely within one pixel, as in scale
0, a typical ray tracer would need to load the full scene (over 8GB)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 • Bako, Sen, and Kaplanyan

4 5 6 7 8
Scale

0.0

1.0×10−3

2.0×10−3

3.0×10−3

4.0×10−3

5.0×10−3

A
vg

S
ce

ne
M

S
E

lo
ss

Ours

EGGX

SGGX

MMSS

Hybrid

0 1 2 3 4 5 6 7 8
Scale

1.0×101

1.0×103

1.0×105

1.0×107

1.0×109

P
er

-p
ix

el
m

em
or

y
fo

ot
pr

in
t

(K
B

)
(l

og
)

Ours (City)

RT (City)

Ours (avg)

RT (avg)

0 1 2 3 4 5 6 7 8
Scale

1.0×10−3

1.0×10−2

1.0×10−1

1.0

R
en

de
r

ti
m

e
(s

ec
)

(l
og

)

Ours (City)

RT (City)

Ours (avg)

RT (avg)

Fig. 9. The plot on the left shows the average MSE across scales for the scenes and methods from Fig. 7. Our approach performs favorably relative to previous
state-of-the-art approaches at all scales. Note, we only plot results for scale 4 and above due to degenerative simplified meshes from these prefiltering
approaches at coarser scales. The log plot in the middle shows the per-pixel memory footprint (in KB) of our approach compared to standard ray tracing for
all scales of the City scene and the average across all 7 scenes from Figs. 7 and 8. At the coarsest resolution (scale 0), the entire scene falls under a pixel
footprint and we require 5 orders of magnitude less memory to render it. As the image resolution increases, ray tracing memory costs are amortized across the
pixels and hence decrease. On the other hand, our footprint remains more-or-less constant across scales, but still yields an order of magnitude improvement
at our finest resolution (scale 8), which corresponds to a 256 × 256 image. The rightmost plot shows our corresponding render times for these scenes as
compared to an equal-quality ray traced baseline. At lower scales, our unoptimized prototype tends to be faster than ray tracing up until an inflection point at
approximately scale 5, where the incurred cost of network inferencing over multiple batches exceeds the baseline.

C
it
y
(s
ca
le

4)

Ours RT Ours RT

C
it
y
(s
ca
le

8)

Ours RT Ours RT

Fig. 10. The two images show complexity as a heatmap of per-pixel timings
(blue to red with increasing cost) for our approach and equal-quality ray
tracing across scales on the City scene. Unlike ray tracing, our method
accesses roughly a constant number of voxels at each pixel independently
of scene complexity and scale.

and send many samples to properly integrate over the large pixel
footprint. This cost is amortized as the footprint covering the City
grows to 256 pixels in scale 8. However, in our approach each voxel
requires only 3KB of memory as mentioned in Sec. 5.4, so evaluating
all the voxels along a pixel’s footprint requires only about 100 KB
of memory on average and is more-or-less constant across scales.
This culminates in a savings of ∼280,000× for scale 0 and 28× at

scale 8 relative to ray tracing. Eventually as the scales get finer, it is
more advantageous to switch to ray tracing as one can extrapolate
from the plot, but such scales are less common in production. For
the typical LoD scales shown here, there is a clear memory savings
and this behavior holds true when considering the average memory
footprint across all 7 scenes from Figs. 7 and 8.

6.3.1 Timings and complexity. As expected for LoD methods, there
is an inflection point where ray tracing becomes faster. For example,
at the finest image scale (scale 8), an equal-quality Monte Carlo
render (EQMC) requires 128 spp, which takes 74ms on the standard
GPU ray tracer, while our GPU beam tracer needs 591ms. However,
when we start minifying details (e.g., at scale 5 and lower), our
method starts to outperform ray tracing, as illustrated in the right-
most plot of Fig. 9. For a single instance of City at scale 4, EQMC
would require 128 spp, which takes 50ms on the ray tracer and
35ms on our beam tracer using our framework. The inflection point
depends on the implementation efficiency of both algorithms and,
with an unoptimized implementation of our algorithm, we observed
the inflection point to be around scale 5 across all 7 scenes. One im-
plementation inefficiency occurs at higher image resolutions, where
the total number of pixels and inference calls increases and we are
technically limited to running a maximum batch of 4096 elements
through our pipeline at a time, resulting in low GPU utilization.

The heatmaps in Fig. 10 correspond to the per-pixel complexity as
a function of time for our method and EQMC across scales. Specifi-
cally, each pixel in ours represents the number of voxels evaluated
at that pixel multiplied by the cost of evaluating each voxel. Mean-
while, for EQMC, each pixel shows the number of samples required
to reach the same level of MSE error as our approach times the
cost of each sample. Note, the per-pixel timings shown here do not
capture the overhead of swapping network batches, as discussed in
the previous paragraph, since the image could simply be evaluated
as tiles in parallel across different GPUs to avoid this cost. Since our

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:17

Ours Ours Reference (256K spp)

C
ut
le
ry

(p
ha

se
)

Fig. 11. The full image on the left is a visualization of different view di-
rections along a uniform stride reconstructed using our phase point query
network. Each tile is a slice showing the incident throughput (single channel)
corresponding to a given outgoing direction. The insets demonstrate how
our network is able to fit to the underlying data despite the noise in the
reference. Across the two insets, the network faithfully denoises the phase
along various supports, while preserving anisotropic specularities.

framework needs to process roughly the same number of voxels
everywhere and with the same evaluation cost, we demonstrate
constant timings across pixels and scales relative to EQMC, which
needs to evaluate more samples based on the complexity of the
appearance falling within a pixel’s footprint.

6.4 Temporal stability
In the supplemental, we include video fly-throughs for the scenes
in Fig. 7 and Fig. 8. Our results are temporally coherent when
switching across different voxel scales without any noticeable flick-
ering or popping even though such consistency is not enforced
in the training loss for the networks. Moreover, in scenes such as
Stormtrooper Army, the network produces anti-aliased results
for distant stormtroopers along the horizon despite using only a sin-
gle beam per pixel, while the ray-traced result requires significant
samples in this region to reduce flickering. The network is also able
to smoothly interpolate across both view and light directions, as a
result of the stochastic data generation that continuously updated
the voxel data and allowed arbitrary queries.

Note, we did not retrain or use separate networks across scales. By
having our network train on voxels from all scales simultaneously, it
is able to smoothly interpolate across scales with voxels of varying
degrees of geometric and material complexity. In the future, it would
be interesting to investigate how interpolation in the latent space
of voxels could produce non-linear appearance changes for regions
in between LoD scales. This could replace the traditional linear
combinations used by previous LoD methods and in our approach.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK
It is interesting to note that in our system the networks actually do
more than just compression; they actually perform both denoising
and interpolation. To keep the computation in our data generation
step tractable, we limit the number of samples sent out for each out-
going direction which resulted in some noise in the 4D tabular data
(see Fig. 11). Here each 2D tile corresponds to a different outgoing
direction and each pixel within the tile corresponds to a different

Fig. 12. Ablation studies plotting validation errors (ℓ2) for the phase-slice
network across training iterations using various configurations in the Cut-
lery scene. Increasing the latent size results in better performance, yet gains
become marginal for larger sizes (left plot). Increasing the number of net-
work layers also improves performance up to a point (right plot). In our
implementation, we use 256 floats for the latent vector and 6 layers in the
decoder. See additional ablation analysis in Appendix A.

Ours Coverage

M
os
sy

R
oc

k
O
ak

Fig. 13. Total coverage for theMossyRock scene (top), where transmittance
behaves as a watertight surface, and theOak scene (bottom), which behaves
volumetrically. Note, the white background does not bleed through the asset.

Ours Ours w/ modified albedo

St
or
m
tr
oo

pe
r
A
rm

y

Fig. 14. Our framework’s design offers flexibility with its ability to expose
certain parameters such as the diffuse albedo to easily modify the scene
appearance. Without any additional training or data generation, we can
easily change the stormtroopers from the classic white to a modern red.

incident direction, and each tile can be thought of as a slice of the
4D light field. However, as was observed in the recent Noise2Noise
work [Lehtinen et al. 2018], using reference data with slight noise
did not cause optimization issues and instead allowed the network
to denoise the data and smoothly fit the underlying function.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 • Bako, Sen, and Kaplanyan

LUT Ours Reference (16K spp)

Fig. 15. Results on a toy example of a scene with a bush in front of a blue
sphere to demonstrate how well geometric and material correlations are
tracked. On the left, we use a lookup table (LUT) to generate the image
directly. In the center, we use our network-based compression of the tabular
data. Both LUT and ours closely match the ray-traced reference (right).

Ours (hybrid) Ours Ours (hybrid) Ref. (16K spp)

Pa
rk

in
g
Lo

t

Fig. 16. Results using a hybrid system with our approach for the minified
regions and standard ray tracing for the foreground. Our original approach
has blocky artifacts in the foreground since the size of the voxels at the max-
imum LoD scale precomputed by our framework is significantly larger than
the beam at each pixel. The inset straddles a region where the foreground
and background layers meet and are blended in a hybrid system.

Ours Ours Ref. (16K spp)

C
it
y

M
os
sy

R
oc

k

Fig. 17. Limitations of our approach. The first row shows a roof in the City
scene for which our results are not as dark as the reference. This artifact
stems when a voxel straddles occluded geometry with a different base color
than the unoccluded region. Specifically, the roof has a room directly below
it that has a light colored floor and which is included in the voxels containing
the roof. When calculating the average RGB albedo for the directly overhead
view (red beam) the albedo contains only the roof texture, however grazing
views (green beam) can include the floor’s albedo causing the lighter color
we see. The albedo of the projected cross-section of the voxel is shown for
these corresponding views. Another limitation can be found in the bottom
row for the Mossy Rock scene. Sharp delta highlights that only occur over
a very small solid angle are not always preserved perfectly across all voxels
and can get slightly overblurred.

In Fig. 12, we show ablation plots for the Cutlery scene. The
first plot shows the ℓ2 error of the phase-slice validation data (a
subset of the voxels in the training data since we are overfitting to a
given scene) with varying sizes of latent vectors. We see that as the
size increases from 64 to 512 floats, the converged error decreases
due to the network’s ability to store more information within these
latent features and its additional coefficients. However, the data
suggests there are only marginal returns once the vector is suffi-
ciently large (e.g., increasing from 256 to 512 floats has comparable

performance despite requiring double the memory). This tradeoff
was not beneficial, so we kept the vector size at 256 floats.

The second plot of Fig. 12 evaluates the impact of decoder size on
validation error. As before, we observed better performance as the
number of layers increased from 2 to 6 layers. At 8 layers, we found
that performance slightly decreased relative to 6 layers (used in our
final implementation), in particular for the phase-slice network. This
could be due to difficulty optimizing the larger network. In the other
decoders, 6 and 8 layers performed comparably, so we decided to
use the more lightweight 6-layer architecture consistently across de-
coders. Appendix A has additional analysis on plots corresponding
to the remaining three decoders for the Cutlery scene.
Fig. 13 serves as a sanity check of our transmittance model by

placing the assets in front of a white background. The top row
shows theMossy Rock asset which is a large macrogeometry with
a rough, yet watertight, surface. Meanwhile, the bottom row shows
the Oak asset which contains many small leaves in random loca-
tions, where this sub-resolution microgeometry behaves relatively
more like a volume. In both cases, the white background does not
bleed through showing that our beam has achieved full coverage
and our transmittance model was sufficiently accurate.
Fig. 14 demonstrates another application of our approach. Once

an asset is prefiltered in our framework, it can still be modified
with trivial changes without any computation of additional data or
further training. For example, in the Stormtrooper Army scene,
we can modify each voxel’s diffuse albedo by scaling up the red
channel of the albedo information in their latent vectors to switch
from white stormtroopers to red ones. Moreover, a simple extension
to our current approach would be to additionally save out the spec-
ular albedo to have control over that as well. Although we show
modification in the diffuse albedo across all the voxels in this scene,
selecting only a subset of voxels to modify, perhaps through a GUI,
is readily realizable. Finally, it would be interesting to explore how
to expose additional material parameters, such as roughness, for
manipulation within our latent data to control the glossiness of the
full asset or portions of it.

In Fig. 15, we set up a toy example with a bush in front of a blue
sphere in order to demonstrate how our framework tracks material
and geometric correlations and synthesizes an image. If we use the
saved out tabular data as a look up table (LUT) we can generate
an image that closely resembles the high-sample-count reference
rendered with a ray tracer showing that our assumptions and ap-
proximations hold up sufficiently. Moreover, our full network-based
approach successfully compresses the data without a noticeable loss
in quality. In fact, our full approach is able to remove the small noise
found in the LUT result since the network denoises the tabular data
as shown in Fig. 11.
Some of the scenes in Fig. 8 contain blocky artifacts in the fore-

ground regions of scale 8. This is from the pixel footprint being
significantly smaller than the size of the discrete voxels found at our
finest scale. For example, in the Parking Lot scene shown in Fig. 16
we see that our precomputed voxels are too coarse to accurately
represent the foreground objects. However, we can use a hybrid
system, a more pragmatic solution for a production pipeline, where
we blend between the foreground and the simplified background
based on the size of the pixel footprint. Specifically, for pixels where

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:19

the voxels are too coarse, we simply use standard rendering and
use our approach on pixels where the voxels are a pixel or smaller.
With this strategy, we can accurately represent larger objects that
are close to the viewer, while still saving on costs by using our pre-
filtering approach on the background layer. Note, with additional
computation finer scales can be precomputed in order to render a
larger region of the foreground with our framework.
However, our method has some limitations that are the subject

of future work. As noted previously, our approach requires precom-
puting the voxel data and training on a per-scene basis, which can
be a significant computational cost for some pipelines. Constant
improvements in real-time and GPU rendering enable faster data
generation to alleviate the former issue, while leveraging faster
training methods [Müller et al. 2022] could help with the latter.

Another limitation is shown in the top row of Fig. 17 depicting the
roof of a building in theCity scene that is lighter than the ray traced
reference. The voxels on the roof straddle a room whose interior is
occluded normally. Thus, the albedo of the room’s floor (which is
lighter than the roof) is included in the average base color we store.
To properly handle such a case, we could instead use an RGBA mask
(instead of just the alpha channel as with the coverage mask), a 4×
increase in correlation-related data. By having the albedo spatially
represented, we could determine which regions are occluded and
omit them from the average base color.

Extending the phase function to have a spatial component instead
of only a scalar can be similarly justified. However, this would
increase the data by𝑀×𝑀 , where𝑀 is the desired spatial resolution
of a single slice (e.g., the element of a fixed outgoing direction
would be a 4D LUT of size 𝑁 × 𝑁 × 𝑀 × 𝑀 , where 𝑁 = 128 in
our implementation). Note, these estimates of increased data do
not take into account the likely necessity of increasing the size of
the latent vectors for each voxel as well as the networks in order
to more accurately capture the additional data. Thus, in this case,
there is a high potential for both the memory footprint and the
runtime during rendering to increase. Moreover, the single RGB
base color per view direction and single throughput per incoming
and outgoing direction was sufficient for the scenes shown here.
Finally, the current framework demonstrated results with a diffuse
base color, but it would be interesting to extend the framework to
additionally handle a specular albedo, perhaps in a similar fashion
with an additional latent vector and sub-network or to combine the
latent vectors with a single albedo decoder.
We used a relatively simplistic transmission model for combin-

ing adjacent voxels. In particular, we chose a coverage mask to
determine occlusions while tracing beams through our SVO. This
approach is limited by the resolution of our masks and there could
be inaccuracies from subpixel occlusions. Properly accounting for
correlation in volumetric rendering is active research [Bitterli et al.
2018; Jarabo et al. 2018; Kettunen et al. 2021; Vicini et al. 2021] and
more sophisticated formulations could be applied in our framework.

In the second row of Fig. 17, we show another limitation present
in the Mossy Rock scene. If the highlights of a voxel are present
in an extremely small solid angle of only a few bins, it poses a
difficult scenario for our networks to capture exactly, especially
when training on the order of a million voxels. Thus, such sharp
highlights in some cases can be slightly overblurred by our approach.

Here, we focused on properly handling primary beams, which
tend to be among the most difficult aspects since their contribution,
and any artifacts, would be directly visible. It would be interesting
to apply our framework to render effects such as global illumination
by casting multiple beams. This could be done by spawning new
beams at every intersected voxel and accumulating the radiance
contribution of that sub-beam. Nothing changes from a theoretical
perspective, as our algorithm is presented as a general framework
with an arbitrary number of bounces (see Sec. 3). Instead, the main
challenge would be to efficiently evaluate multiple sub-beams with-
out accumulating costs beyond that of ray tracing. Furthermore,
to avoid inefficient, brute-force sampling for generating additional
beams or to enable common sampling strategies such as multiple
importance sampling (MIS) in our beam tracer, we would need a
mechanism for importance sampling the phase function of each
voxel. The most straightforward way to do this in our current frame-
work would be to normalize our decoder’s phase-slice estimate to
convert it to a PDF and then create an inverse CDF for importance
sampling. Ideally, however, a learned solution would be more light-
weight and flexible. One prospect would be to train a network to
take in a set of random numbers and a latent representation of the
phase (or its PDF) and output the next sample direction and its
probability. Ensuring unbiasedness with such a strategy would be a
compelling research direction.

8 CONCLUSION
We present the first deep learning framework for prefiltering com-
plex 3D environments into multi-scale LoDs. Unlike some previous
work, we do not rely on surface-only or volumetric-only models
to simplify assets. Instead, we voxelize the scene and convert it to
an SVO representation. The full appearance of each voxel is then
captured through a ray-traced, data-generation step that saves the
phase function, albedo, and coverage information in tabular form.
By saving the true appearance in this manner, we avoid heuris-
tics for classifying regions of assets, as in hybrid approaches, and
can capture effects including sharp specularities that volumetric
approaches cannot. Our novel, learning-based compression scheme
compresses the rendered data into small latent vectors that can be
easily stored and used by a beamtracer to render the final image by
utilizing lightweight decoder networks, and without requiring any
access to the original geometry or materials. To facilitate community
involvement, our code and supplementary material are available on-
line.4 Finally, we compare favorably to state-of-the-art prefiltering
approaches and demonstrate significant memory savings relative to
ray tracing on a variety of complex scenes.

9 ACKNOWLEDGMENTS
We thank Delio Vicini, Anjul Patney, Zhao Dong, and Warren Hunt
for helpful discussions. Special thanks to Anton Sochenov for his
tremendous help including prototyping a real-time demo. We are
very appreciative to Guillaume Loubet for releasing code for com-
parisons of both of his papers. We are grateful for Matt Chapman’s
help in generating many of the scenes in the paper. We thank the
following artists/sources for the models we used in our scenes:

4https://doi.org/10.7919/F4NK3C21

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.7919/F4NK3C21

1:20 • Bako, Sen, and Kaplanyan

GetWreckedDJ (stormtrooper), avi9526 (hangar), Quixel (mossy
rock asset and textures), and Ndakasha (cutlery cloth). We thank
Facebook Reality Labs for their unwavering support. This work was
partially funded by National Science Foundation grants #IIS-1619376
and #IIS-1911230.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, et al. 2015. TensorFlow: Large-scale ma-

chine learning on heterogeneous systems. Software available from tensorflow.org.
Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. 2018. Real-time rendering. AK

Peters/CRC Press.
Hendrik Baatz, Jonathan Granskog, Marios Papas, Fabrice Rousselle, and Jan Novák.

2021. NeRF-Tex: Neural reflectance field textures. In Eurographics Symposium on
Rendering. The Eurographics Association.

Steve Bako, Mark Meyer, Tony DeRose, and Pradeep Sen. 2019. Offline deep importance
sampling for Monte Carlo path tracing. Comp. Graph. Forum (2019).

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-predicting convo-
lutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4
(July 2017).

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A multiscale representation for
anti-aliasing neural radiance fields. ICCV (2021).

Laurent Belcour, Ling-Qi Yan, Ravi Ramamoorthi, and Derek Nowrouzezahrai. 2017.
Antialiasing complex global illumination effects in path-space. ACM Trans. Graph.
36, 1 (2017).

Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel. 2019.
Neural view-interpolation for sparse lightfield video. arXiv preprint arXiv:1910.13921
(2019).

Benedikt Bitterli, Srinath Ravichandran, ThomasMüller, MagnusWrenninge, Jan Novák,
Steve Marschner, and Wojciech Jarosz. 2018. A radiative transfer framework for
non-exponential media. ACM Trans. Graph. 37, 6, Article 225 (Dec. 2018), 17 pages.

Eric Bruneton and Fabrice Neyret. 2011. A survey of non-linear pre-filtering methods
for efficient and accurate surface shading. IEEE Trans. Vis. Comp. Graph. (2011).

Brent Burley and Walt Disney Animation Studios. 2012. Physically-based shading at
Disney. In ACM SIGGRAPH 2012 Talks.

Chakravarty R. A. Chaitanya, Anton Kaplanyan, Christoph Schied, Marco Salvi, Aaron
Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruction
of noisy Monte Carlo image sequences using a recurrent autoencoder. ACM Trans.
Graph. (July 2017).

Subrahmanyan Chandrasekhar. 1960. Radiative transfer. Dover publications, New York.
Anpei Chen, Minye Wu, Yingliang Zhang, Nianyi Li, Jie Lu, Shenghua Gao, and Jingyi

Yu. 2018. Deep surface light fields. Proc. ACM Comp. Graph. Interactive Techniques
1, 1 (2018).

Xavier Chermain, Frédéric Claux, and Stéphane Mérillou. 2019a. A microfacet-based
BRDF for the accurate and efficient rendering of high-definition specular normal
maps. The Visual Computer (2019).

Xavier Chermain, Frédéric Claux, and Stéphane Mérillou. 2019b. Glint rendering based
on a multiple-scattering patch BRDF. Comp. Graph. Forum 38, 4 (2019).

Jonathan Cohen, DineshManocha, andMarc Olano. 1997. Simplifying polygonal models
using successive mappings. In Proceedings. Visualization’97 (Cat. No. 97CB36155).

Jonathan Cohen, Marc Olano, and Dinesh Manocha. 1998. Appearance-preserving
simplification. In Proc. ACM Comp. Graph. Interactive Techniques.

Jonathan David Cohen. 1999. Appearance-preserving simplification of polygonal
models. (1999).

Robert L Cook, John Halstead, Maxwell Planck, and David Ryu. 2007. Stochastic
simplification of aggregate detail. In ACM Trans. Graph., Vol. 26.

Robert L Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed ray tracing. In
Proc. ACM Comp. Graph. Interactive Techniques.

Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. 2009. Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering. In Proceedings of
the 2009 symposium on Interactive 3D graphics and games.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. 2011.
Interactive indirect illumination using voxel cone tracing. Comp. Graph. Forum 30,
7.

Cyril Crassin, Chris Wyman, Morgan McGuire, and Aaron Lefohn. 2018. Correlation-
aware semi-analytic visibility for antialiased rendering. In Proceedings of the Confer-
ence on High-Performance Graphics.

Yue Dong. 2019. Deep appearance modeling: A survey. Visual Informatics (2019).
Zhao Dong, Bruce Walter, Steve Marschner, and Donald P Greenberg. 2015. Predicting

appearance from measured microgeometry of metal surfaces. ACM Trans. Graph.
35, 1 (2015).

Jonathan Dupuy and Eric Heitz. 2016. Additional progress towards the unification of
microfacet and microflake theories.

Luis E. Gamboa, Jean-Philippe Guertin, and Derek Nowrouzezahrai. 2018. Scalable
appearance filtering for complex lighting effects. ACM Trans. Graph. 37, 6 (Dec.
2018).

Liangsheng Ge, Beibei Wang, Lu Wang, and Nicolas Holzschuch. 2018. A compact
representation for multiple scattering in participating media using neural networks.
In ACM SIGGRAPH 2018 Talks. Vancouver, Canada.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep
feedforward neural networks. In Int. Conf. Art. Intelligence and Statistics.

Enrico Gobbetti and Fabio Marton. 2005. Far voxels: A multiresolution framework for
interactive rendering of huge complex 3D models on commodity graphics platforms.
ACM Trans. Graph. 24, 3 (2005).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. The MIT
Press.

Jonathan Granskog, Fabrice Rousselle, Marios Papas, and Jan Novák. 2020. Composi-
tional neural scene representations for shading inference. ACM Trans. Graph. (Proc.
SIGGRAPH) 39, 4 (July 2020).

Jonathan Granskog, Till N. Schnabel, Fabrice Rousselle, and Jan Novák. 2021. Neural
scene graph rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 40, 4 (Aug. 2021).

Jie Guo, Yanjun Chen, Bingyang Hu, Ling-Qi Yan, Yanwen Guo, and Yuntao Liu. 2019.
Fractional Gaussian fields for modeling and rendering of spatially-correlated media.
ACM Trans. Graph. (Proc. SIGGRAPH) 38, 4 (2019).

Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. 2015. The SGGX
microflake distribution. ACM Trans. Graph. 34, 4 (2015).

Eric Heitz and Fabrice Neyret. 2012. Representing appearance and pre-filtering subpixel
data in sparse voxel octrees. In Proc. High Perf. Graph.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensionality of
data with neural networks. Science 313, 5786 (2006).

Hugues Hoppe. 1996. Progressive meshes. In Proc. ACM Comp. Graph. Interactive
Techniques.

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner. 2010.

A radiative transfer framework for rendering materials with anisotropic structure.
ACM Trans. Graph. (Proc. SIGGRAPH), Article 53, 13 pages.

Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Steve
Marschner. 2014. Discrete stochastic microfacet models. ACM Trans. Graph. 33, 4
(2014).

Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A radiative transfer framework
for spatially-correlated materials. ACM Trans. Graph. 37, 4 (2018).

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A machine learning
approach for filtering Monte Carlo noise. ACM Trans. Graph. 34, 4 (July 2015).

Nima Khademi Kalantari and Ravi Ramamoorthi. 2017. Deep high dynamic range
imaging of dynamic scenes. ACM Trans. Graph. 36, 4 (2017).

Nima Khademi Kalantari and Ravi Ramamoorthi. 2019. Deep HDR video from sequences
with alternating exposures. In Comp. Graph. Forum, Vol. 38.

Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-
based view synthesis for light field cameras. ACM Trans. Graph. 35, 6, Article 193
(Nov. 2016), 10 pages.

Simon Kallweit, Thomas Müller, Brian McWilliams, Markus Gross, and Jan Novák. 2017.
Deep scattering: Rendering atmospheric clouds with radiance-predicting neural
networks. ACM Trans. Graph. 36, 6, Article 231 (Nov. 2017), 11 pages.

Kaizhang Kang, Zimin Chen, Jiaping Wang, Kun Zhou, and Hongzhi Wu. 2018. Efficient
reflectance capture using an autoencoder. (2018).

Anton S Kaplanyan, Stephen Hill, Anjul Patney, and Aaron E Lefohn. 2016. Filtering
distributions of normals for shading antialiasing. Proc. High Perf. Graph.

Markus Kettunen, Eugene d’Eon, Jacopo Pantaleoni, and Jan Novák. 2021. An unbiased
ray-marching transmittance estimator. ACM Trans. Graph. (Proc. SIGGRAPH) 40, 4,
Article 137 (Aug. 2021).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
CoRR abs/1412.6980 (2014).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems.

Alexandr Kuznetsov, Miloš Hašan, Zexiang Xu, Ling-Qi Yan, Bruce Walter,
Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019. Learning
generative models for rendering specular microgeometry. ACM Trans. Graph. 38, 6,
Article 225 (Nov. 2019), 14 pages.

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoor-
thi. 2021. NeuMIP: Multi-resolution neural materials. ACM Trans. Graph. (Proc.
SIGGRAPH) 40, 4, Article 175 (July 2021), 13 pages.

Dylan Lacewell, Brent Burley, Solomon Boulos, and Peter Shirley. 2008. Raytracing
prefiltered occlusion for aggregate geometry. In 2008 IEEE Symposium on Interactive
Ray Tracing.

Samuli Laine and Tero Karras. 2010. Efficient sparse voxel octrees. IEEE Trans. Vis.
Comp. Graph. 17, 8 (2010).

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning image restoration without

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Deep Appearance Prefiltering • 1:21

clean data. In Proceedings of the 35th International Conference on Machine Learning
(Proceedings of Machine Learning Research), Vol. 80. PMLR.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural sparse voxel fields. NeurIPS (2020).

Tom Lokovic and Eric Veach. 2000. Deep shadow maps. In ACM Trans. Graph. (Proc.
SIGGRAPH).

Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. 2018. Deep appear-
ance models for face rendering. ACM Trans. Graph. 37, 4 (2018).

Guillaume Loubet. 2018. Efficient models for representing sub-pixel appearances. Univer-
sité Grenoble Alpes PhD thesis.

Guillaume Loubet and Fabrice Neyret. 2017. Hybrid mesh-volume LoDs for all-scale
pre-filtering of complex 3D assets. In Comp. Graph. Forum, Vol. 36.

Guillaume Loubet and Fabrice Neyret. 2018. A new microflake model with microscopic
self-shadowing for accurate volume downsampling. In Comp. Graph. Forum, Vol. 37.

David Luebke and Carl Erikson. 2006. View-dependent simplification of arbitrary polyg-
onal environments. Technical Report. North Carolina Univ at Chapel Hill.

David Luebke, Martin Reddy, Jonathan D Cohen, Amitabh Varshney, Benjamin Watson,
and Robert Huebner. 2003. Level of detail for 3D graphics. Morgan Kaufmann.

David P Luebke. 2001. A developer’s survey of polygonal simplification algorithms.
IEEE Computer Graphics and Applications 21, 3 (2001).

Nelson Max, Brett Keating, Curtis Mobley, and En-Hua Wu. 1997. Plane-parallel
radiance transport for global illumination in vegetation. In Rendering Techniques 97.
Springer.

Maxim Maximov, Laura Leal-Taixe, Mario Fritz, and Tobias Ritschel. 2019. Deep
appearance maps. In Proceedings of the IEEE International Conference on Computer
Vision.

Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner,
Markus Gross, and Wojciech Jarosz. 2015. Multi-scale modeling and rendering of
granular materials. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4 (July 2015).

Alexandre Meyer, Fabrice Neyret, and Pierre Poulin. 2001. Interactive rendering of trees
with shading and shadows. In 12th Eurographics Workshop on Rendering Techniques.
Springer.

Ehsan Miandji, Joel Kronander, and Jonas Unger. 2013. Learning based compression
of surface light fields for real-time rendering of global illumination scenes. In SIG-
GRAPH Asia 2013 Technical Briefs.

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari,
Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local light field fusion: Practical
view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (2019).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing scenes as neural radiance fields
for view synthesis. In ECCV.

Jonathan TMoon, BruceWalter, and SteveMarschner. 2008. Efficient multiple scattering
in hair using spherical harmonics. In ACM Trans. Graph., Vol. 27.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph.
41, 4, Article 102 (July 2022), 15 pages.

Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák. 2016.
Efficient rendering of heterogeneous polydisperse granular media. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 35, 6 (Dec. 2016).

Tsukasa Noma. 1995. Bridging between surface rendering and volume rendering
for multi-resolution display. In Eurographics Workshop on Rendering Techniques.
Springer.

Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte
Carlo methods for volumetric light transport simulation. Computer Graphics Forum
(Proceedings of Eurographics - State of the Art Reports) 37, 2 (May 2018).

Sean Palmer, Eric Maurer, and Mark Adams. 2014. Using sparse voxel octrees in a
level-of-detail pipeline for Rio 2. In ACM SIGGRAPH 2014 Talks.

Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
et al. 2010. OptiX: A general purpose ray tracing engine. In ACM Trans. Graph.,
Vol. 29.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From
theory to implementation. Morgan Kaufmann.

Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. 2019. Neural BTF
compression and interpolation. In Comp. Graph. Forum, Vol. 38.

Boris Raymond, Gael Guennebaud, and Pascal Barla. 2016. Multi-scale rendering of
scratched materials using a structured SV-BRDF model. ACM Trans. Graph. 35, 4
(2016).

Peiran Ren, Yue Dong, Stephen Lin, Xin Tong, and Baining Guo. 2015. Image based
relighting using neural networks. ACM Trans. Graph. 34, 4 (2015).

Peiran Ren, Jinpeng Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.
2013. Global illumination with radiance regression functions. ACM Trans. Graph.
32 (July 2013).

Pỳnar Satỳlmỳs, Thomas Bashford-Rogers, Alan Chalmers, and Kurt Debattista. 2017.
A machine-learning-driven sky model. IEEE computer graphics and applications 37,
1 (2017).

Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Batra, Abhishek Kadian, Oleksandr
Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, and
Vladlen Koltun. 2019. Habitat: A platform for embodied AI research. In IEEE/CVF
International Conference on Computer Vision.

K Schroder, Reinhard Klein, and Arno Zinke. 2011. A volumetric approach to predictive
rendering of fabrics. In Comp. Graph. Forum, Vol. 30.

Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall,
and Jonathan T. Barron. 2021. NeRV: Neural reflectance and visibility fields for
relighting and view synthesis. In CVPR.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
geometric level of detail: Real-time rendering with implicit 3D shapes. (2021).

Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Harry Shum. 2008. Filtering and
rendering of resolution-dependent reflectance models. IEEE Trans. Vis. Comp. Graph.
14, 2 (2008).

Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Heung-Yeung Shum. 2005. Mul-
tiresolution reflectance filtering.

Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. 2021. A non-exponential trans-
mittance model for volumetric scene representations. Transactions on Graphics
(Proceedings of SIGGRAPH) 40, 4 (Aug. 2021).

Delio Vicini, Vladlen Koltun, and Wenzel Jakob. 2019. A learned shape-adaptive sub-
surface scattering model. ACM Trans. Graph. (Proc. SIGGRAPH) 38, 4 (July 2019).

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David
Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and
asymmetric loss functions. ACM Trans. Graph. 37, 4, Article 124 (2018).

Ting-Chun Wang, Jun-Yan Zhu, Nima Khademi Kalantari, Alexei A. Efros, and Ravi
Ramamoorthi. 2017. Light field video capture using a learning-based hybrid imaging
system. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017).

Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. 2004. Image
quality assessment: From error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004).

Lance Williams. 1978. Casting curved shadows on curved surfaces. In ACM Trans.
Graph. (Proc. SIGGRAPH). 5.

Lance Williams. 1983. Pyramidal parametrics. In Proc. ACM Comp. Graph. Interactive
Techniques.

Nathaniel Williams, David Luebke, Jonathan D Cohen, Michael Kelley, and Brenden
Schubert. 2003. Perceptually guided simplification of lit, textured meshes. In Pro-
ceedings of Symposium on Interactive 3D Graphics.

Lifan Wu, Shuang Zhao, Ling-Qi Yan, and Ravi Ramamoorthi. 2019. Accurate appear-
ance preserving prefiltering for rendering displacement-mapped surfaces. ACM
Trans. Graph. (Proc. SIGGRAPH) 38, 4 (2019).

Julie C. Xia, Jihad El-Sana, and Amitabh Varshney. 1997. Adaptive real-time level-of-
detail based rendering for polygonal models. IEEE Trans. Vis. Comp. Graph. 3, 2
(1997).

Chao Xu, Rui Wang, Shuang Zhao, and Hujun Bao. 2017. Real-time linear BRDF
mip-mapping. In Comp. Graph. Forum, Vol. 36.

Zexiang Xu, Kalyan Sunkavalli, Sunil Hadap, and Ravi Ramamoorthi. 2018. Deep
image-based relighting from optimal sparse samples. ACM Trans. Graph. 37, 4
(2018).

Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi
Ramamoorthi. 2014. Rendering glints on high-resolution normal-mapped specular
surfaces. ACM Trans. Graph. 33, 4 (2014).

Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-
normal distributions for efficient rendering of specular microstructure. ACM Trans.
Graph. 35, 4 (2016).

Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. 2006. R-LODs: Fast LOD-
based ray tracing of massive models. The Visual Computer 22, 9-11 (2006).

Shuang Zhao, Miloš Hašan, Ravi Ramamoorthi, and Kavita Bala. 2013. Modular flux
transfer: Efficient rendering of high-resolution volumes with repeated structures.
ACM Trans. Graph. 32, 4 (2013).

Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building volu-
metric appearance models of fabric using micro CT imaging. In ACM Trans. Graph.,
Vol. 30.

Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2012. Structure-aware
synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31, 4 (2012).

Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling
scattering parameters for rendering anisotropic media. ACM Trans. Graph. 35, 6
(2016).

Junqiu Zhu, Yaoyi Bai, Zilin Xu, Steve Bako, Edgar Velázquez-Armendáriz, Lu Wang,
Pradeep Sen, Milos Hasan, and Ling-Qi Yan. 2021. Neural complex luminaires:
Representation and rendering.

Tobias Zirr and Anton S. Kaplanyan. 2016. Real-time rendering of procedural multiscale
materials. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I3D ’16). ACM, New York, NY, USA, 10.

Károly Zsolnai-Fehér, Peter Wonka, and Michael Wimmer. 2018. Gaussian material
synthesis. ACM Trans. Graph. 37, 4 (2018).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 • Bako, Sen, and Kaplanyan

Fig. 18. Additional ablation results plotting validation errors for the other
decoders not discussed in the main text. The behavior of the phase network
(first row) is similar to the phase-slice network (see Fig. 12) where increasing
the latent size results in slightly better performance, yet gains become mar-
ginal for larger sizes (left plot). Moreover, increasing the number of network
layers also improves performance up to a point (right plot). Meanwhile,
the coverage and albedo sub-networks have a relatively lower threshold
for latent sizes and layer counts as they do not improve their performance
after reaching a certain size. To ensure all cases are handled robustly with a
consistent architecture, we use 256 floats for the latent vector and 6 layers
in the decoder, as this performs well in all cases and for all decoders.

A ADDITIONAL ABLATION ANALYSIS
Fig. 18 shows additional results from the two ablation experiments
for the three remaining decoders (the phase-slice network plots
were shown in Fig. 12): phase, albedo, and coverage. The first row
shows the results of these two ablations for the phase network. We
see a similar behavior to that of the phase-slice results in that there
are only marginal gains in performance for the converged networks
with latent size of 256 floats and 6 layers, respectively. Next, the
coverage network (second row) has roughly the same converged
result for all latent sizes and for networks with 4 or more layers.
Finally, the albedo network in the last row, performs well at all latent
and network sizes. For simplicity and a consistent architecture for
all sub-networks, we use 256 floats for each latent component and
6 layers for each decoder. Note, these experiments suggest there is
potential to further minimize memory footprint by using albedo and
coverage latent sizes of 64 or 128 floats in future implementations.

B PSEUDOCODE
In Algorithm 1, we present pseudocode for various components of
our system to facilitate comprehension. Our full code is available at
our paper page at to allow for comparisons and future work.

ALGORITHM 1: Deep Appearance Prefiltering (DAP) Algorithm
Input: Scene to prefilter, level of detail (LoD) scale 𝑠 , scene for final

rendering (e.g., camera and lighting parameters)
Output: Rendered image, trained network weights W, sparse voxel

octree𝑉 , latent voxel encodings L

/* SVO creation (Sec. 4.1) */
𝑉 = Voxelize(𝑠)

/* Data generation (Sec. 4.2) and training (Sec. 5.2) */
forall training iterations do

do in parallel
D = GenerateVoxelData(𝑉) // Includes brute-force rendering
W = TrainNetwork(D, W)

end
end

/* Prerendering (Sec. 5.3) */
L = GenerateLatentVectors(D, W) // Save each voxel’s latent vector
S = GenerateShadowMaps(𝑉 , L, W)
LoadFinalSceneParameters()

/* Runtime (Sec. 5.3) */
forall pixels 𝐼 in final image 𝐿 do

/* Return list of voxels the beam touches in front to back order */
𝑉𝐼 = TraceBeam(𝐼 ,𝑉)

Λ = InitializeBeamCoverage()
𝐿𝐼 = 0
𝑇 = ComputeTransmittance(Λ)
while𝑇 < 1 and Count(𝑉𝐼) > 0 do

𝜔0, 𝜔𝑖 = GetOutgoingAndIncomingDirections() // Sec. 4.1
r = EncodeQueryAndConcatenate(v, 𝜔0, 𝜔𝑖)
𝜌 , 𝛾 , 𝛼 = EvaluateDecoders(r)
𝐹 = ComputePhase(𝜌 , 𝛾) // Eq. 17
Λ = UpdateWavefrontAndCoverage(𝛼) // Eq. 16
𝑇 = ComputeTransmittance(Λ) // Eq. 15
𝑆 = ComputeScatteringTerm(𝐹 ,𝑇 , S) // Eq. 10
𝐺 = ComputePrefilteredEmission() // Eq. 14
𝐸 = ComputeEmissionTerm(𝐺 ,𝑇) // Eq. 13
𝐵 = ComputeBoundaryTerm() // Eq. 5
𝐿𝐼 = UpdateColor(𝑆 , 𝐸, 𝐵) // Eq. 4

end
end
return 𝐿

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.7919/F4NK3C21

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Appearance models
	2.2 Prefiltering and level of detail
	2.3 Machine learning

	3 Prefiltered Light Transport
	4 Neural Prefiltering
	4.1 Framework overview
	4.2 Prefiltering and data generation
	4.3 Neural compression

	5 Network design and utilization
	5.1 Compression networks
	5.2 Training
	5.3 Prerendering and runtime
	5.4 Implementation details

	6 Results
	6.1 Appearance models
	6.2 Hybrid approaches
	6.3 Complex scenes
	6.4 Temporal stability

	7 Discussion, limitations, and future work
	8 Conclusion
	9 Acknowledgments
	References
	A Additional Ablation Analysis
	B Pseudocode

