
Implementation of Random Parameter Filtering
PRADEEP SEN and SOHEIL DARABI
UNM Advanced Graphics Lab

Monte Carlo (MC) rendering systems can produce spectacular images but
are plagued with noise at low sampling rates. In a recent paper [Sen and
Darabi 2011b], we observed that this noise occurs in regions of the image
where the sample values are a direct function of the random parameters
used in the Monte Carlo system. Therefore, we proposed a way to identify
MC noise by estimating this functional relationship from a small number of
input samples. To do this, we treat the rendering system as a black box and
calculate the statistical dependency between the outputs and inputs of the
system.We then use this information to reduce the importance of the sample
values affected by MC noise when applying an image-space, cross-bilateral
filter, which removes only the noise caused by the random parameters but
preserves important scene detail. The process of using the functional rela-
tionships between sample values and the random parameter inputs to filter
MC noise is called random parameter filtering (RPF), and we demonstrate
that it can produce images in a few minutes that are comparable to those
rendered with a thousand times more samples. Furthermore, our algorithm
is general because we do not assign any physical meaning to the random
parameters, so it works for a wide range of Monte Carlo effects, includ-
ing depth of field, area light sources, motion blur, and path-tracing. In this
technical report, we present the complete set of implementation details nec-
essary to reproduce the results of our paper, and we show some additional
results produced by our technique.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Raytracing

General Terms: Rendering

Additional Key Words and Phrases: Monte Carlo rendering, global illumi-
nation

1. INTRODUCTION
Monte Carlo (MC) rendering systems can produce beautiful, photo-
realistic images by simulating light transport through a series of
multidimensional integrals at every pixel of the image: integration
of the radiance over the aperture of the camera, over the area light
sources of the scene, over the time the shutter is open, and even
over the pixel for antialiasing. For a pixel in the image I(i, j), this
process can be written as:

I(i, j) =

i+ 1
2Z

i− 1
2

j+ 1
2Z

j− 1
2

· · ·
1Z

−1

1Z

−1

t1Z

t0

f(x, y, · · ·, u, v, t) dt dv du · · · dy dx.

MC renderers estimate these integrals by taking many point sam-
ples of the scene function f(), a black-box, functional representa-
tion of the ray-tracing system given a specific scene. This sampling
process involves tracing rays with sets of random parameters that
correspond to the dimensions of integration, e.g., t (the moment
in time of the ray for motion blur), u and v (the position of the
ray on the aperture of the camera for depth of field) and so on. In
path-tracing [Kajiya 1986], the Monte Carlo system integrates over
randomly selected paths from the camera’s image plane through the
scene in order to compute full global illumination effects.
If we evaluate the scene function at enough of these multi-

dimensional samples, the MC rendering system will converge to

the actual value of the integral, resulting in a physically correct
image. Unfortunately, the variance of the estimate of the integral
decreases as O(1/N) with the number of samples, so a large num-
ber of samples are needed to get a noise-free result. This means that
although we can get a very noisy approximation of the final image
in a few minutes (as shown in the top image of Fig. 1), we usually
need a long time (as much as a day per image) to get a result that is
acceptable for high-end rendering applications, shown in the bot-
tom image of Fig. 1. This limits the use of Monte Carlo rendering
systems in modern digital film production.
An obvious way to try to address this problem is to apply a noise-

reduction filter to the noisy image. Indeed, this approach has been
explored by researchers in the past (e.g., [Lee and Redner 1990;
Rushmeier and Ward 1994; Jensen and Christensen 1995; McCool
1999; Xu and Pattanaik 2005; Dammertz et al. 2010]), but with lim-
ited success. The fundamental problem is that filters cannot easily
determine what is unwanted noise (introduced by the MC integra-
tion process) and what is valid scene content, since scene content
can often have a noisy appearance.
In a recent paper [Sen and Darabi 2011b], we introduced a new

approach called random parameter filtering (RPF), a simple, post-
process technique based on a bilateral filter [Tomasi and Manduchi
1998] that works in image space after the samples have been com-
puted and that is easy to integrate with a conventional MC render-
ing system. Our algorithm is able to identify Monte Carlo noise and
separate it from scene-dependent noise using a simple observation:
the undesired MC noise occurs whenever the sample values are a
function of the random parameters used in the Monte Carlo system.
For example, in a scene with an area light source that is point-

sampled by the MC system to compute soft shadows, we see that in
fully dark areas (the umbra), the final shaded color of the samples
is not a function of the random position of the sample on the light
source because no matter where the sample is located the shadow
ray is always blocked. These regions are not noisy because the ran-
dom parameters do not affect the output. A similar thing happens
in fully lit regions, where the shadow ray is able to reach the light
source regardless of its position on the light source. In both of these
regions, the scene function f() is constant with respect to the ran-
dom point on the light source and so its position does not affect the
output of the function.
In the penumbra regions, however, some of the shadow rays will

reach the light source while others will be blocked by occluders,
depending on where we position the sample on the light source.
This means that the color of the sample in these parts of the im-
age will be a function of the position of the sample on the light
source, which is why these regions contain undesired Monte Carlo
noise. This same observation holds true for other Monte Carlo ef-
fects, such as depth of field, motion blur, path-tracing, and Russian
roulette, as we show in our paper [Sen and Darabi 2011b].
Our key insight (and the basis of the random parameter filtering

algorithm) is that if we estimate these functional relationships be-
tween the inputs and the outputs of the rendering system, we can
reduce the importance of sample features that depend on the ran-
dom parameters when applying a cross-bilateral filter [Eisemann
and Durand 2004; Petschnigg et al. 2004] to reduce MC noise but

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

2 • P. Sen and S. Darabi

In
pu

t M
on

te
 C

ar
lo

 (8

 s
am

pl
es

/p
ix

el
)

O
ur

 a
pp

ro
ac

h
(R

PF
)

 (
8

sa
m

pl
es

/p
ix

el
)

Re
fe

re
nc

e
re

nd
er

in
g

(8

,1
92

 s
am

pl
es

/p
ix

el
)

Fig. 1. Our algorithm takes as input a small set of MC samples, which are fast to compute but very noisy. We then estimate the functional dependency
between the sample values and the random parameters used in the rendering system, which enables us to filter out the MC noise without blurring scene detail.
The result is comparable to a rendering with a large number of samples but more than 100× faster. This path-traced image shows the input rendering at
8 samples/pixel (top), the result of our method (middle), and the reference at 8,192 samples/pixel for comparison (bottom). The reference frame took more
than 24 hours to compute, while ours took 14 minutes. This is the full-frame version of Fig. 1 in the paper [Sen and Darabi 2011b].

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 3

sample
outputsscene function black box

world
position

sample
inputs

surface
normals

texture
value

final
color

screen
position

random
params

(x, y)

(u, v)

image plane

lens

f(x, y, u, v)

implemented by the ray-tracing system

(x, y)

(u, v)

functional dependency?

Fig. 2. We observe that determining where in the image we have Monte
Carlo noise boils down to identifying the regions in which the sample val-
ues are functions of the random parameters. To do this, our algorithm treats
the rendering system as a black box with scene function f() that is evalu-
ated deterministically by the ray tracing system for a specific scene, in this
case the CHESS scene of Fig. 3 with depth-of-field. This function takes as
its only inputs the x, y position on the image as well as the random param-
eters for Monte Carlo integration (here the u, v position on the lens). Since
these are the only inputs to the deterministic system, the outputs of the black
box must all be functions of these inputs (or constant with respect to them).
These outputs are a set of features for each sample, such as world posi-
tion, surface normal, texture value (the output of the texture lookup), and
of course, sample color (the final shaded value). Our algorithm estimates
the functional relationship by taking a set of samples in a neighborhood N
and treating the input and output values of this neighborhood as statistical
random variables. We then look for the statistical dependence of the outputs
on the inputs using mutual information. This allows us to determine which
scene features are highly dependent on our random parameters so that we
can lower their weight during bilateral filtering.

preserve scene detail. Unfortunately, finding the functional rela-
tionship between sample features and the random parameters in
closed, mathematical form is impossible for complex scenes. Fur-
thermore, finding where f() is constant with respect to the random
parameters is not easy with a small number of samples. To do this,
we would ideally fix the sample position on the image x, y and
vary the random parameters to see if they affect the output. How-
ever, because we can only compute a small number of samples, we
typically vary x, y as well as the random parameters, which makes
it difficult to determine whether differences in sample values are
caused by changes in the random parameters or by changes in the
image position x, y.
So to estimate these functional dependencies, we propose instead

to treat the rendering system as a black box with scene function f()
as shown in Fig. 2, which outputs other scene features in addition
to the sample color. We then model the inputs and outputs of f()
as random variables, and estimate the functional relationships by
looking for statistical dependencies between them. To do this, we
use the concept of mutual information from the field of informa-
tion theory, which tells us how much information the inputs give us
about a specific output.
To understand our model, we can conceptually replace the black

box with a complex electronic circuit that implements function f().
For parts of the image where the outputs are functions of the ran-
dom parameters (i.e., f() varies with respect to the random pa-
rameters for these x, y image positions) there exists a connection
somewhere in the complex circuitry between the random inputs and
the outputs. On the other hand, if the outputs are not functions of
the random parameters (i.e., f() is constant with respect to them
for a fixed x, y), the connection between the output and the ran-
dom parameter inputs is effectively severed for these x, y regions
in the image. This means that in these regions the “signal” from

Fig. 3. The MC noise that we seek to eliminate is directly caused by the
random parameters whenever the sample values are a function of them. We
demonstrate this by changing the input parameters but keeping the scene
function f() the same, using the CHESS scene with depth of field as an ex-
ample. If we set the u, v parameters to random values for each sample, we
get the noisy image shown on the left. If, instead, we use uniform parame-
ters for u, v, the noise is replaced with banding artifacts, shown on the right.
Both images were rendered with 4 samples/pixel so here four sets of bands
are clearly seen. Note that only the regions where the sample color is a func-
tion of the random parameters are affected by changing the parameters u, v,
so the regions that are in focus in this DoF scene are mostly unchanged.

the random inputs never reaches the output, so they do not appear
noisy in the final image.
With this analogy in mind, what we are doing in Monte Carlo

rendering is “wiggling” the input parameters with a random number
generator and observing the “wiggle” in the output in the form of
noise, which only occurs when the output is a function of these
noisy inputs (i.e., there is some path in the complex circuitry that
connects them). The statistical dependence between the wiggle at
the output and that at the inputs is what our mutual information
metric uses to estimate the functional dependency between them.
Of course, there might be other ways to determine the functional

relationship between the outputs and inputs, such as somehow fix-
ing the samples positions in x, y while only changing the random
parameters and looking at the variance of f() to see if the outputs
are affected. Although methods like this might be able to establish
a functional dependency, one nice feature of the mutual informa-
tion metric is that it scales up and down as the amount of depen-
dency changes. For example, the sample color in a depth-of-field
scene can become a function of the random position on the lens
the instant that scene intersection point moves away from the focus
plane, resulting in a variance metric that has almost a step-function
response. The mutual information metric, on the other hand, scales
gradually, so we can use it to size our cross-bilateral filter like we
do in this work.
However, mutual information does not always perfectly estimate

the functional relationship, as we discuss in the paper. It can fail,
for example, if the wiggle in the output is masked by a complex
random function inside the circuit model, such as when the output
is the function of the input through a look-up table (e.g., a texture)
that contains a set of random numbers as elements. This makes the
input and output appear to be statistically independent and there-
fore hides their connection from the mutual information metric.
However, compared to the other metrics we tested (see Sec. 6.3
of the paper [Sen and Darabi 2011b]), mutual information worked
reasonably for a variety of complex scenes. Nevertheless, the study
of other metrics for the purposes of random parameter filtering is
an interesting topic for future research.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

4 • P. Sen and S. Darabi

Table I. Notation used in this paper
n number of random parameters used to render the scene
m number of scene features available in the feature vector
s number of samples per pixel
xi sample vector containing the features of the ith sample
pi the floating-point (x, y) position of the ith sample on the screen
ri n × 1 vector of random parameters used to compute the ith sample
fi m × 1 vector of scene features associated with the ith sample
ci original color vector of the ith sample
v̄ vector with mean removed and normalized by standard deviation
Dv

q dependency of q on v
W r

c,k fractional contribution of all random parameters on the kth color channel
W r

f,k fractional contribution of all random parameters on the kth scene feature
W f,k

c fractional contribution of the kth scene feature on all color channels
wij weight that sample j contributes to sample i (wij �= wji).
c′

i final filtered color vector of the ith sample
P a pixel in the image representing a set of s samples
N set that defines the neighborhood of samples used for filtering the samples
mv

Q vector with per-element mean of vector v over set Q
σv

Q vector with per-element standard deviation of vector v over set Q
t number of the iteration in our multi-pass filtering approach
M maximum number of samples in neighborhood N

Note that although the presence of MC noise requires that f()
vary with respect to the random parameters in parts of the image
(i.e., there should be a connection between the random inputs and
the outputs in these regions), we attribute the noise we see in the
final image to the random parameters themselves, not to the vari-
ance in the integrand f(). We can see this clearly if we replace
the input parameters with uniformly sampled values, as shown in
Fig. 3. Although the scene function f() is unchanged, the noise
has been replaced by banding artifacts in which the differences be-
tween sample values (which are used by our bilateral filter) have
different properties than when generated with random numbers. Of
course, only regions where the sample value is a function of the
random parameters are affected by this change in input, while the
other regions remain the same. Our algorithm uses mutual informa-
tion to detect the presence of noise from the inputs in the functional
outputs, which is why we say that it is able to filter out the noise
generated by the random parameters in Monte Carlo rendering.
One advantage of our proposed algorithm is that it is general and

can handle any of the effects that can be computed using Monte
Carlo integration. Unlike some of the other algorithms that have
been proposed (e.g., [Soler et al. 2009; Egan et al. 2009]), we
do not need to attribute physical meaning to the random parame-
ters. Instead, our algorithm embodies the spirit of traditional Monte
Carlo integration, where one only needs to provide random values
for each parameter that the system should integrate over. In our
case, we must simply specify the random parameters that are to be
filtered so that the algorithm can remove the noise from each of
these effects in the final image. This allows us to handle a wide
range of Monte Carlo effects, including depth of field, area light
sources, motion blur, path-tracing, etc. We can also handle effects
that require discrete integration (summation) such as integrating
over multiple light sources using a discrete random number to se-
lect between them, or using Russian roulette to randomly either
transmit or reflect a ray off a semitransparent surface.
We present most of the key theoretical ideas behind the random

parameter filtering algorithm in our main paper [Sen and Darabi
2011b]. In this technical report, we supplement that discussion with
pseudocode and more implementation detail that will be helpful
to readers who are interested in reproducing our algorithm. Since
some of the discussion here is by necessity duplicated from our
original paper, we have taken the liberty of reusing text from that
paper when appropriate but without citation in order not to clutter

Algorithm 1 Random Parameter Filtering (RPF) Algorithm
Input: scene to render and s the number of samples/pixel
Output: final image
1: Render scene with s samples/pixel and output sample vector x
for every sample [Sec. 3.1]

2: for all samples i in image I do
3: c′

i ← ci

4: end for
5: box = {55, 35, 17, 7} [Sec. 3.2]
6: for iteration step t = 0, 1, 2, 3 do
7: box size b = box[t]
8: max number of samplesM ← b2 × s/2
9: for all pixels P in image I do
10: N ← Pre-process Samples(P, b,M) [Sec. 4]
11: {α, β} ← Compute Feature Weights(t,N) [Sec. 5]
12: c′′ ← Filter Color Samples(P,N , α, β, c′) [Sec. 6]
13: end for
14: for all samples i in image I do
15: c′

i ← c′′
i

16: end for
17: end for

/* all samples in image I have been filtered... box filter to com-
pute final pixel values */

18: for all pixels P in image I do
19: Box filter samples in pixel P to compute final pixel value
20: end for
21: return final image

the discussion. We also present a set of results using test scenes as
well as scenes from the paper. Note section and figure references
refer to this document unless we specify that we are referring to
something in the original paper.

2. PSEUDOCODE
We begin by presenting the pseudocode for our entire algorithm,
which is divided into four parts. Algorithm 1 shows the overall al-
gorithm and explains how each of the individual pieces fit together.
Algorithm 2 explains how we preprocess the samples by clustering
them and removing their mean and standard deviation (Sec. 4). Al-
gorithm 3 shows how we statistically compute the feature weights
for our cross-bilateral filter using the statistical dependency of fea-
tures on the random variables (Sec. 5). Finally, Algorithm 4 shows
how to filter the samples (Sec. 6). The sections that follow go into
sufficient detail to make it possible for interested readers to imple-
ment the RPF algorithm. The notation we shall use in this technical
report is similar to that of the main paper and is listed in Table I.

3. RENDERING THE SAMPLES AND SETTING UP
OUR POST-PROCESS FILTER

Our algorithm is a post-process filter, so the first step is to render
the samples at the given sampling rate of s samples/pixel and then
we apply our filtering process which consecutively performs the
filter in several iterations.

3.1 Rendering samples and creating feature vectors
We first render the samples at a fixed sampling density and store
vector x for each sample. The data structure is simply a floating
point array with enough space for the number of samples (com-
puted as the image resolution times the number of samples/pixel

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 5

s) and enough space for each (we used 27 floats per sample to
store all the information). For the scene features in f , our algo-
rithm stores for each sample the normal, world-space position, and
texture values (the set of floats from texture lookups used by the
surface shader to produce the surface color) for the first intersec-
tion point of the ray, and the world position and normal for the
second intersection in a path tracer. The same features are stored
for every scene, even if an object does not have the specific feature
(a zero is substituted) or if the shader does not use the feature when
computing the final color (features that do not affect the final color
are ignored). Since all these features are available to the rendering
system at some point during the tracing of the ray, outputting the
feature vector for the sample is simply a matter of caching the infor-
mation after it is calculated. This is standard practice in rendering
systems when creating a G-buffer [Saito and Takahashi 1990] for
deferred shading [Deering et al. 1988].
In addition to these scene-dependent features, our algorithm also

stores the random parameters used by the Monte Carlo system so
that it can identify the functional relationships between the inputs
and the outputs. Wherever possible, we use these random parame-
ters in the form that most closely reflects their use in the renderer.
For example, the random u, v position on the lens for depth of field
can be computed in several ways: we can use two uniformly dis-
tributed random numbers from 0 to 1 that are then scaled and trans-
lated into a -1 to 1 range on a square lens, or we can use them to
pick θ and r values that uniformly sample a circular lens without
rejection, etc. Rather than deal with the raw random parameters that
have no physical meaning, we use the final random values as they
are used by the rendering system. In the case of the position on
the lens, we would use the final u, v values ranging from -1 to 1
as our random parameters because these relate to the physical pro-
cess simulated by the rendering system. In most cases the random
parameters are floating point values, but they could also be inte-
gers, such as when we use a discrete random number to select an
individual light source for lighting with multiple light sources.
Note that in industrial rendering systems these random param-

eters are often determined with pre-computed sequences of low-
discrepancy numbers provided to the renderer. In this case, we
would not need to store the random parameters in the sample vec-
tor since the post-process filter could use this same sequence to
recompute the random parameters on the fly. In our implementa-
tion, however, we did the brute-force approach and simply saved
out all of the random parameters our scenes were using. We used
the PBRT2 [Pharr and Humphreys 2010] and LuxRender [LuxRen-
der 2011] Monte Carlo rendering systems to compute the samples.

3.2 Applying multiple filter iterations
To estimate the functional dependencies of sample values on the
inputs to the MC rendering system using mutual information, we
must select a set of samples to process. We cannot use every sam-
ple in the image because the functional dependencies change from
region to region (e.g., an image may have some regions in focus
and others out of focus, and these have different dependencies on
the random parameters). Therefore, as we loop over every pixel in
the image, we select a local neighborhood of samples N around
that pixel to measure the local statistics for mutual information.
However, we need to decide how big to make the block size that
defines the extent of neighborhood N .
If we use a large block size, there will be more samples to calcu-

late statistics (improving the accuracy of our dependency estimates)
and provide us with more samples to filter out noise. Unfortunately,
larger block sizes have less locality and might cause problems when
the block overlaps regions with different functional dependencies,

Algorithm 2 Pre-process Samples [Sec. 4]
Input: set of samples in pixel P , box size b, maximum number of

samplesM
Output: set of samples in neighborhood N
1: σp ← b/4, N ← P
2: Compute mean (mf

P) and standard deviation (σf
P) of the fea-

tures of samples in pixel P for clustering
/* add samples to neighborhood N */

3: for q = 1 toM − s do
4: Select a random sample j from samples inside the box but

outside P with distribution based on σp [Sec. 4.1]
5: flag ← 1

/* perform clustering [Sec. 4.2] */
6: for scene feature k = 1 tom do
7: if |fj,k −mf

P,k| > {3|30}σf
P,k and

|fj,k −mf
P,k| > 0.1 or σf

P,k > 0.1 then
8: flag ← 0
9: break
10: end if
11: end for
12: if flag equals to 1 then
13: N ← sample j
14: end if
15: end for

/* neighborhood N now ready for statistical analysis */

/* compute normalized vector for each sample by removing
mean and dividing by standard deviation [Sec. 4.3] */

16: Compute mean (mx
N) and standard deviation (σx

N) of samples
in neighborhood N

17: for all samples i in N do
18: x̄i ← (xi −mx

N)/σx
N

19: end for

20: return set of samples in neighborhood N

such as regions where the amount of defocus blur changes. To re-
solve these two competing considerations, we found it best to use
a multi-pass approach, where our algorithm loops over the image
several times using different block sizes. We start at a larger block
size and then shrink it down in a series of iterations. We found four
iterations to be sufficient, starting at a block size of 55 pixels wide
and then going down to 35, 17 and finally 7. At each step, we filter
the samples’ colors with the weighted bilateral filter of Eq. 17 using
the samples in N , and then use that new filtered color in the next
pass of the algorithm (except to compute statistical dependencies,
since they are always computed with the original sample color).
By going from larger to smaller, we first address the low-

frequency noise that a smaller filter kernel would leave behind and
then, as we reduce the block size, we eliminate the localized noise
and clean up the detail. The multi-pass approach also reduces the
maximum block size needed for filtering, since we can emulate a
larger filter by progressively applying a smaller kernel. This allows
us to get good performance and quality at the same time.

4. PRE-PROCESSING THE SAMPLES
After we have rendered our samples, we are ready to apply the ran-
dom parameter filtering algorithm, which is performed indepen-
dently for every pixel of the image. As we loop over each pixel,
the first thing we need to do is to pre-process the samples in the
block around the pixel to create a neighborhood N of samples to

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

6 • P. Sen and S. Darabi

use to compute statistics and perform filtering. This section follows
Sec. 4.3 of the original paper and the pseudocode listed in Alg. 2.

4.1 A statistical approach to Gaussian filtering
To run our algorithm, we need to apply our bilateral filter to the
samples in the block of pixels. However, for large block sizes, the
process of calculating the contribution of all samples to any given
sample is time consuming because the number of samples increases
as O(N2) with block size. To accelerate this process, we select
a random subset of samples within the block and only use these
samples for statistical analysis and to filter the samples within the
pixel. This is a form of Monte Carlo estimation as well, and it
significantly accelerates our calculations although it introduces a
slight error. However, we found this small error to be reasonable
considering the improvement in running time for our algorithm.
This is a small acceleration modification that we mention briefly in
Sec. 4.5.1 of the original paper [Sen and Darabi 2011b].
Our bilateral filter in Eq. 17 weights samples based on screen po-

sition distance with a Gaussian of variance σ2
p that depends on the

block size (σp = b/4). Since we are picking a set of random sam-
ples, we can draw them with a Gaussian distribution with variance
σ2
p around the pixel in question in order to essentially perform im-
portance sampling [Robert and Casella 2005]. This allows us to re-
move the first term from our bilateral filter calculation as discussed
in Sec. 6.

4.2 Clustering samples to avoid mixing statistics
As mentioned in Sec. 4.3.1 of the original paper [Sen and Darabi
2011b], we need to perform some kind of clustering when placing
samples in neighborhood N to avoid mixing statistics. To begin,
we always include in neighborhood N the set of samples P at the
current pixel: N ⇐ P . We then pick a random set of samples with
a Gaussian distribution from the block of pixels (as described in
Sec. 4.1) and add them to the neighborhood N only if all of their
scene features f are within 3 standard deviations of the mean for
the pixel. So given sample j, that is within the block of pixels:

N ⇐ N ∪ j if |fj,k −mf
P,k| < 3σf

P,k for all k.

In practice, we use a value of 30 instead of 3 when testing the
world position since it varies much more than the other features.
Also, we only do this test when σf

P,k > 0.1 because we do not
want to throw all the samples away in cases where the variance is
very small, such as constant-valued regions.

4.3 Normalization of scene features
Before we compute the statistical dependencies for a set of sam-
ples in a neighborhood, we must first remove the mean and divide
by the standard deviation for each of the elements in the sample
vector. The reason for this is that the features in f reside in very
different coordinate systems (world positions could be in the range
of 0 to 1000, while the normal vector could have components in the
range of 0 to 1, for example). If we do not correct for this discrep-
ancy, we would inadvertently give larger weight to certain features
when calculating dependency that may not necessarily be more im-
portant. This procedure is quite common in the machine learning
community as well, since they are confronted with a similar prob-
lem [Hastie et al. 2001]. This is also related to Mahalanobis dis-
tance [Mahalanobis 1936], but in this case it is as if we assume
that the covariance between scene features is zero, resulting in a
diagonal covariance matrix. We represent vectors that have been
normalized in this manner with a bar (e.g., f becomes f̄).

Algorithm 3 Compute Feature Weights [Sec. 5]
Input: iteration step t, set of samples in neighborhood N
Output: color weights α and feature weights β for bilateral filter

/* Compute the dependencies for the colors using the samples
in N */

1: for color channel k = 1 to 3 do
2: for random parameter l = 1 to n do
3: Dr,l

c,k ← μ(c̄N ,k; r̄N ,l) with Eq. 1
4: end for
5: CalculateDr

c,k with Eq. 4 using theDr,l
c,k terms

6: for position parameter l = 1 to 2 do
7: Dp,l

c,k ← μ(c̄N ,k; p̄N ,l) with Eq. 1
8: end for
9: CalculateDp

c,k with Eq. 5 using theDp,l
c,k terms

10: for scene feature l = 1 tom do
11: Df ,l

c,k ← μ(c̄N ,k; f̄N ,l) with Eq. 1
12: end for
13: CalculateDf

c,k with Eq. 6 using theDf ,l
c,k terms

14: CalculateW r
c,k with Eq. 10 usingDr

c,k andDp
c,k

/* I now have everything I need to compute αk */
15: αk ← max(1 − 2(1 + 0.1t)W r

c,k, 0)
16: end for

17: Calculate Dr
c and Dp

c and Df
c by adding up the Dr

c,k, D
p
c,k,

andDf
c,k terms over the three color channels with Eq. 8

/* Compute the dependencies for the scene features using sam-
ples in N */

18: for scene feature k = 1 tom do
19: for random parameter l = 1 to n do
20: Dr,l

f ,k ← μ(f̄N ,k; r̄N ,l) with Eq. 1
21: end for
22: CalculateDr

f ,k with Eq. 2 using theDr,l
f ,k terms

23: for position parameter l = 1 to 2 do
24: Dp,l

f ,k ← μ(f̄N ,k; p̄N ,l) with Eq. 1
25: end for
26: CalculateDp

f ,k with Eq. 3 using theDp,l
f ,k terms

27: CalculateDf ,k
c with Eq. 7 using theDf ,k

c,l terms from line 11

28: CalculateW r
f ,k with Eq. 9 usingDr

f ,k andDp
f ,k

29: CalculateW f ,k
c with Eq. 12 usingDf ,k

c ,Dr
c,Dp

c , andDf
c

30: βk ← W f ,k
c · max(1 − (1 + 0.1t)W r

f ,k, 0)
31: end for

32: return α and β

5. COMPUTING THE FEATURE WEIGHTS
This section describes the core of our algorithm that computes the
color/feature weights α and β. We begin by explaining how we
use mutual information to compute the statistical dependencies be-
tween a sample feature and the inputs to the Monte Carlo system,
and finish by describing how we calculate the weights for our bilat-
eral filter.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 7

5.1 Calculating mutual information
Since it is difficult to derive an exact functional relationship be-
tween scene features and the inputs of the rendering system pi and
ri for complex scenes, we propose instead to see if there is a sta-
tistical dependency (i.e., does knowing the inputs tell us something
about the scene features). This is the basic meaning of mutual in-
formation, a concept from the field of information theory [Cover
and Thomas 2006], which is the exact measure of dependence be-
tween two random variables and indicates how much information
one tells us about another. The mutual information between two
random variablesX and Y can be calculated as:

μ(X;Y) =
X
x∈X

X
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

where these probabilities are computed over the neighborhood of
samples N around a given pixel.
To calculate the mutual information between two vectors x and

y (or in our case, e.g., f̄N ,k and r̄N ,l), we first calculate the his-
togram of each of them (for computing p(x) and p(y)) as well as
their joint histogram (for p(x, y)) and plug their probabilities into
Eq. 1 to get μ(x,y). To compute the histograms, we first make all
the values positive by subtracting the minimum element in the vec-
tor and quantize the elements into integer bins by rounding their
values. We count how many times the values of x fall inside each
bin and find the probabilities by dividing by the length of x. The
joint histogram is calculated in a similar way, except with pairs of
values (x,y). To implement this, we examined the mutual informa-
tion code from the Matlab Central website [Peng 2007] and rewrote
our own version in C.

5.2 Estimating statistical dependencies on inputs
We begin by showing how we calculate the dependency of the
kth scene feature on all random parameters (given by Dr

f ,k) using
mutual information. Our heuristic approximates this by measur-
ing the dependency on individual random parameters and adding
them up. Therefore, we first calculate the statistical dependency
between the kth scene feature and the lth random parameter by
Dr,l

f ,k = μ(f̄N ,k; r̄N ,l), and then approximate the dependency of
the kth scene feature on all n random parameters as:

Dr
f ,k =

X
1≤l≤n

Dr,l
f ,k =

X
1≤l≤n

μ(f̄N ,k; r̄N ,l). (2)

The dependency of the kth scene feature on screen position (Dp
f ,k)

and color dependenciesDr
c,k andDp

c,k are similarly computed:
Dp

f ,k =
X

1≤l≤2

Dp,l
f ,k =

X
1≤l≤2

μ(f̄N ,k; p̄N ,l), (3)

Dr
c,k =

X
1≤l≤n

Dr,l
c,k =

X
1≤l≤n

μ(c̄N ,k; r̄N ,l), (4)

Dp
c,k =

X
1≤l≤2

Dp,l
c,k =

X
1≤l≤2

μ(c̄N ,k; p̄N ,l). (5)

We also compute the dependency of the kth color channel on
all the scene features, so that later we can reduce the weight for
features that do not contribute to the final color:

Df
c,k =

X
1≤l≤m

Df ,l
c,k =

X
1≤l≤2

μ(c̄N ,k; f̄N ,l). (6)

We also compute a related term, how all color channels are de-
pendent on the kth scene feature:

Df ,k
c =

X
1≤l≤3

Df ,k
c,l =

X
1≤l≤3

μ(c̄N ,l; f̄N ,k). (7)

Finally, the Dr
c, Dp

c , and Df
c terms are calculated by summing

over the color channels:
Dr

c =
X

1≤k≤3

Dr
c,k, Dp

c =
X

1≤k≤3

Dp
c,k, Df

c =
X

1≤k≤3

Df
c,k. (8)

5.3 The error of our approximation
Ideally, we would calculate the statistical dependency of the kth

scene feature on all random parameters using the joint mutual in-
formation μ(rN ,1, rN ,2, . . . , rN ,n; fN ,k). Unfortunately, this joint
mutual information can be difficult and expensive to compute as
the number n gets larger, because the histogram grows to the power
of n while the number of samples we have to do statistics grows
linearly. This means that our ability to compute the histogram ac-
curately degenerates quickly and it becomes much slower to do so
(the curse of dimensionality strikes again). For this reason, we ap-
proximate this instead by measuring the dependency on individual
random parameters and adding them up as described in the last sec-
tion. Here, we examine what effect this has in our overall calcula-
tion of statistical dependency.
To keep things simple, let us assume that we have two sta-

tistically independent random variables R1 and R2 that are the
inputs to the system and produce output feature Y . We would
like to measure μ(R1, R2;Y), but instead we approximate it as
μ(R1;Y)+μ(R2;Y). What difference does this make? The deriva-
tion below (whereH() is entropy) shows that we are underestimat-
ing the statistical dependence:

μ(R1, R2;Y) =H(R1, R2) − H(R1, R2|Y)

=H(R1)+H(R2|R1)−H(R1|Y)−H(R2|R1, Y)

=μ(R1;Y) + H(R2|R1) − H(R2|R1, Y)

If R1 and R2 are independent, thenH(R2|R1) = H(R2). So:

μ(R1, R2;Y) = μ(R1;Y) + H(R2) − H(R2|R1, Y)

= μ(R1;Y) + μ(R2;R1, Y)

= μ(R1;Y) + μ(Y,R1;R2)

= μ(R1;Y) + μ(R2;Y) + μ(R1;R2|Y)

So our approximation that μ(R1, R2;Y) ≈ μ(R1;Y) + μ(R2;Y)
effectively assumes that μ(R1;R2|Y) = 0. This means that we
are essentially ignoring the information that the output feature tells
us about relationship between the inputs, which might not be zero
even though the inputs are statistically independent. To understand
why, we can set the function f() to act as an XOR gate of two
inputs. If we know one of the inputs and the output, we can au-
tomatically determine the other input, even though the two inputs
may be statistically independent.
Since μ(R1;R2|Y) ≥ 0, our approximation is an underestimate

of the true joint mutual information between the random param-
eters and the scene feature. However, in practice we found that
our approximation works quite reasonably, even for intricate scenes
with complex relationships between the random parameters and the
scene features.

5.4 Computing the fractional contributions
Since the sample features are only functions of the random param-
eters ri and the screen position pi, our heuristic computes the frac-
tional contribution of the random parameters to the kth scene fea-
ture with the following formula:

W r
f ,k =

Dr
f ,k

Dr
f ,k + Dp

f ,k + ε
, (9)

Note the addition of the ε term to Eq. 3 of the original paper [Sen
and Darabi 2011b]. This addition prevents degeneration when the

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

8 • P. Sen and S. Darabi

dependencies Dr
f ,k and Dp

f ,k are both small. This expression tells
us how much the kth feature was affected by the random parameters
as a fraction of the contributions from both sets of inputs, with the
reasonable assumption that the position and random parameters are
statistically independent. When the sample is only a function of the
random parameters, this value will be close to 1, and when it is
dependent only on the screen position it will be 0. In the common
case where we have some contribution from both inputs (e.g., a
partially out-of-focus object is dependent on both screen position
and (u, v)), Eq. 9 simply interpolates between the two.
We also have a similar formula using the dependencies of the kth

sample color channel on the random parameters (Dr
c,k) and on the

screen position (Dp
c,k) to compute the fractional contribution of the

random parameters on the kth color channel :

W r
c,k =

Dr
c,k

Dr
c,k + Dp

c,k + ε
. (10)

We will also need the overall contribution of the random param-
eters on the color W r

c for use in sizing our filter in Eq. 19, which
we get by averaging theW r

c,1,W r
c,2,W r

c,3 terms:

W r
c =

1

3
(W r

c,1 + W r
c,2 + W r

c,3). (11)

Finally, we compute the W f ,k
c term that tells us how much the

color depends on a specific feature:

W f ,k
c =

Df ,k
c

Dr
c + Dp

c + Df
c

. (12)

5.5 Computing α and β
Once the statistical dependencies have been calculated, we com-
pute the normalized dependencies we use to determine our α and
β parameters. In our original paper [Sen and Darabi 2011b], we
use the formulas:

αk = 1 − W r
c,k, (13)

βk = W f ,k
c (1 − W r

f ,k), (14)
which are Eqs. 6 and 13 from the original paper. However, we found
that the results are slightly improved if we adjust α and β in each
iteration as the block size decreases by giving more weight to the
dependency on the random parameters. The idea behind this is that
when the block sizes are large, there will be an increase in depen-
dency on the spatial screen position because of the natural spatial
variations in the image, but at the same time our statistics are more
corrupted because of the mixing of statistics that happens with large
block sizes as discussed in Sec. 4.3.1 of the paper. Therefore, we
give more weight to the normalized dependency on the random pa-
rameters as the block size goes down with each iteration. To do this
adjustment, we modify Eqs. 13 and 14 to be:

αk = max(1 − 2(1 + 0.1t)W r
c,k, 0), (15)

βk = W f ,k
c · max(1 − (1 + 0.1t)W r

f ,k, 0), (16)
where the t term is the iteration of our multi-pass approach, with
the first pass t = 0. The incorporation of the t term increases the
weight of W r

c,k and W r
f ,k upon each successive iteration, and the

max() term is added to ensure that the value stays positive.

6. FILTERING THE SAMPLES
Our approach filters the color of samples xi using a weighted bilat-
eral filter in which the importance of the color and scene features is
adjusted to reflect their dependence on the random parameters:

Algorithm 4 Filter Color Samples [Sec. 6]
Input: set of samples in pixel P , set of samples in neighborhood

N , color α and feature weights β, and previous sample colors
c′

Output: filtered color of the samples c′′

1: Calculate W r
c with Eq. 11 using the W r

c,k terms from line 14
in Alg. 3

2: σ2 ← 8σ2
8/s

3: σ2
c = σ2

f ← σ2

(1−W r
c)2

/* filter the colors of samples in pixel P using bilateral filter */
4: for all samples i in P do
5: c′′

i ← 0, w ← 0
6: for all samples j in N do
7: Calculate wij with Eq. 18 using α and β
8: c′′

i ← c′′
i + wijc

′
j

9: w ← w + wij

10: end for
11: c′′

i ← c′′
i/w

12: end for

/* address issues with HDR [Sec. 6.1] */
13: Compute meanmc′′

P and std. dev. σc′′
P of filtered colors

14: for all samples i in P do
15: for color channel k = 1 to 3 do
16: if (c′′

i,k −mc′′
P,k) > σc′′

P,k then
17: c′′

i,k ← mc′′
P,k

18: end if
19: end for
20: end for
21: return filtered color of the samples c′′

wij =exp[− 1

2σ2
p

X
1≤k≤2

(p̄i,k − p̄j,k)2]×

exp[− 1

2σ2
c

X
1≤k≤3

αk(c̄i,k − c̄j,k)2]×

exp[− 1

2σ2
f

X
1≤k≤m

βk(f̄i,k − f̄j,k)2], (17)

where wij is the contribution (or weight) of j th sample to the ith

sample during filtering. Because of the way we select the samples
in neighborhood N randomly using a Gaussian distribution with
standard deviation σp (where σp = b/4), the first term of this ex-
pression is dropped and becomes:

wij =exp[− 1

2σ2
c

X
1≤k≤3

αk(c̄i,k − c̄j,k)2]×

exp[− 1

2σ2
f

X
1≤k≤m

βk(f̄i,k − f̄j,k)2]. (18)

As mentioned in Sec. 4.5.1 of the original paper [Sen and Darabi
2011b], the variances of the Gaussians for both the color and the
feature are set to the same value:

σ2
c = σ2

f =
σ2

(1 − W r
c)2

, (19)

where the W r
c term is calculated by Eq. 11. We divide these vari-

ances by (1 − W r
c)2 because, in the end, we only care about the

sample color and want a large filter wherever the color depends a
lot on the random parameters (i.e., is very noisy). This term adjusts

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 9

0

0.0001

0.0002

0.0003

0.0004

0.0005

8 32 128 512 2048

M
ea

n
Sq

ua
re

 Er
ro

r

Number of samples per pixel

MC (Low Discrepancy)

Our approach (RPF)

Fig. 4. This plot shows the consistent nature of our algorithm by show-
ing that it has lower MSE than traditional Monte Carlo for a subset of the
ROBOTS scene all the way to 2,048 samples/pixel.

the size of the Gaussian based on the overall noise level, making
it large when needed. We could have rolled the σ2

c and σ2
f terms

into the αk and βk coefficients in Eq. 17, but because the σ2
c and

σ2
f terms depend on all three color channels (because of the W r

c

term) as opposed to αk (whose W r
c,k term varies per color chan-

nel), it was easier to separate them. This way, the σ2
c and σ2

f terms
modulate the overall size of the Gaussian while αk and βk adjust
it further based on dependencies with the random parameters. The
σ2 parameter was selected by experimenting with scenes at 8 sam-
ples/pixel, but is scaled inversely by the number of samples per
pixel s (so as s grows, σ2 gets smaller): σ2 = 8σ2

8/s. For noisy
scenes (e.g., indoor path-tracing scenes) we used σ2

8 = 0.02, while
for all others we set σ2

8 = 0.002.
Because we divide the constant σ2

8 by the number of samples
when computing the filter’s variance σ2, our approach is a biased
but consistent estimator, meaning that the estimator converges to
the value of the integral as the number of samples per pixel s goes
to infinity. As s → ∞, the expression above results in σ2

c = σ2
f =

0, which produces a weight wij = 1 only when i = j and zero
elsewhere. Therefore, the color of the samples are not filtered at
all, so our approach converges to standard Monte Carlo, which is a
consistent estimator. This is shown in Fig. 4, which shows that our
approach has a lower mean-squared error (MSE) than conventional
MC all the way to 2,048 samples/pixel.
Once we have obtained our filter weights wij using the weighted

bilateral filter of Eq. 18, we use these weights to blend in the color
contributions from these samples:

c′′
i,k =

P
j∈N wijc

′
j,kP

j∈N wij

, (20)

where the denominator is never zero because at least wii = 1 (a
sample fully contributes to itself). Note that this process filters the
colors of individual samples (not pixels), and we perform this sep-
arately for every pixel in the image, since statistics change from
pixel to pixel. After all samples in the image have been filtered, we
repeat the process with a new iteration as shown in Alg. 1.

6.1 Handling sample spikes in high dynamic range
In our original paper we talk about how we remove HDR spikes
from our renderings using a simple classification based on the stan-
dard deviation of the pixel average value. In Fig. 5 we show what
happens when we do not perform this step. This mostly affects
indoor path-traced scenes such as the one shown in the top row,
because in these kinds of scenes the light sources are small but
can still be accidentally hit in an early bounce in the path-tracing
process, resulting in very bright samples. However, not all scenes

without handling statistical outliers with the algorithm of Sec. 6.1

Fig. 5. This figure shows how statistical outliers can still cause problems
even if we filter them because their colors are orders of magnitude greater
than those around them. The top row shows a path-traced scene where this
problem is visible, and our solution on the right. However, this only affected
a small subset of the scenes we tested (specifically the path-traced scenes
with small, bright light sources). On the bottom row, we show another path-
traced scene that does not have this problem.

required this step, such as the bottom ROBOTS scene which was
unaffected by the application of this technique.

7. ADDITIONAL RESULTS
In this section, we present results from our algorithm to supple-
ment those in the original paper [Sen and Darabi 2011b]. We begin
by doing a breakdown in Fig. 6 to help explain how our algorithm
achieves the result in Fig. 1. First, we show a rendering of the same
scene using only direct lighting in Fig. 6a to highlight the illumi-
nation contribution from path tracing. When compared to the result
in Fig. 1, we can see that many regions of the image are completely
dark when using only direct lighting because these regions are to-
tally occluded from the sky light source. This means that the illu-
mination in these regions that is visible in Fig. 1 is due exclusively
to path-tracing. Our algorithm is able to denoise these regions by
examining the relationship between the sample values and the ran-
dom parameters used to compute the bounces of each path.
Path-tracing is notoriously noisy, and when we examine the input

Monte Carlo samples to our algorithm (shown Fig. 1 top image),
we see that much of the detail in the textures in the scene is com-
pletely gone. This is more evident if we multiply the color channel
by 1000, shown in Fig. 6b. Many of the pixels remain black, which
indicates that these pixels have no useful color information. So how
does our algorithm use an image-space filter to recover this detail
and produce the result in Fig. 6h? The key is our cross-bilateral
filter that examines other sample features, such as world position
(Fig. 6c), surface normal (Fig. 6d), and texture value (Fig. 6e), each
weighted depending on their amount of functional dependency on
the random parameters. In this case, the samples’ colors are ex-

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

10 • P. Sen and S. Darabi

tremely noisy because the path tracing produces a lot of noise while
computing the global illumination. Our algorithm detects the con-
nection between the sample color and the random parameters of the
path tracer, shown in Fig. 6f, and essentially ignores the color when
bilateral filtering. The texture value, on the other hand, is found to
have little dependence on the random parameters (Fig. 6g) so it is
weighted heavily by the cross-bilateral filter.
Therefore, to filter a sample we ignore its color but pay close at-

tention to its texture value. When blending in values from around
the filter kernel, we only blend together samples with similar tex-
ture values. So if our sample hits a dark part of the texture, we
blend in samples from other parts of the texture that are also dark.
Essentially, our filter combines many noisy samples of dark texture
together to approximate a noise-free dark texture. Of course, some
blurring of the texture detail occurs, caused by the fact that we use
a large filter kernel to help denoise this very noisy image (ideally,
we would prefer to use a small filter to help preserve detail). We
call these competing constraints the “dueling filter” problem (see
Sec. 6.5 of the main paper). The study of ways to address the duel-
ing filtering problem is an interesting subject of future work.
We follow this analysis of the SAN MIGUEL result with addi-

tional results that complement those in our original paper [Sen and
Darabi 2011b]. We begin with simple test cases (many of which we
used to debug and test our algorithm) shown in Figs. 7 - 12, fol-
lowed by more complex and interesting scenes in Figs. 13 - 18.
These figures all used the same settings for the RPF algorithm,
highlighting the fact that the proposed method is reasonably robust
for use in production environments.

8. CONCLUSION
In this technical report, we have described the details necessary
to implement our random parameter filtering algorithm, which re-
moves the noise in Monte Carlo rendering by estimating the func-
tional dependency between sample values and the random param-
eters used to compute them. This implementation is only one ex-
ploration of the proposed technique, and we are hopeful that others
will build on this work and improve the quality of the results.

ACKNOWLEDGMENTS
Lei Xiao conducted the experiments to produce several images for this
technical report and implemented the RPF algorithm using the pseudocode
presented to verify its accuracy. He, along with Nima Khademi Kalantari,
were part of valuable discussions that improved the description of the al-
gorithm presented here. Frances Strong helped proofread drafts of the final
manuscript. We also thank Toshiya Hachisuka, Ryan Overbeck, and Kevin
Egan for help with the implementations of their respective algorithms. Fi-
nally, we gratefully acknowledge the sources of the scenes shown in this
technical report (in order of appearance): SAN MIGUEL – Guillermo M.
Leal Llaguno (PBRT2 book), CHESS – Wojciech Jarosz, PERSIAN ROOM –
Luca Cugia, ROBOTS – Jesper Lloyd, BUDDHA – Stanford 3D scanning
repository, GLOSSY BALLS – PBRT2 book, DRAGONS – Stanford 3D scan-
ning repository (PBRT2 book), POOLBALL – Toshiya Hachisuka, TOAST-
ERS – Andrew Kensler, CAR – Turbosquid user graphicdoom (car model),
Wikipedia user Jongleur100 (wall texture), Kevin Egan (scene). This work
was funded by National Science Foundation CAREER award IIS-0845396.

REFERENCES

COVER, T. AND THOMAS, J. 2006. Elements of Information Theory, Sec-
ond ed. John Wiley & Sons, Hoboken, New Jersey.

DAMMERTZ, H., SEWTZ, D., HANIKA, J., AND LENSCH, H. P. 2010.
Edge-avoiding À-trous wavelet transform for fast global illumination fil-
tering. In Proceedings of High Performance Graphics 2010. 67–75.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND HUNT, N.
1988. The triangle processor and normal vector shader: a VLSI system
for high performance graphics. In ACM SIGGRAPH ’88. ACM, New
York, NY, USA, 21–30.

EGAN, K., TSENG, Y.-T., HOLZSCHUCH, N., DURAND, F., AND RA-
MAMOORTHI, R. 2009. Frequency analysis and sheared reconstruction
for rendering motion blur. ACM Trans. Graph. 28, 3, 1–13.

EISEMANN, E. AND DURAND, F. 2004. Flash photography enhancement
via intrinsic relighting. ACM Trans. Graph. 23, 673–678.

HACHISUKA, T., JAROSZ, W., WEISTROFFER, R. P., DALE, K.,
HUMPHREYS, G., ZWICKER, M., AND JENSEN, H. W. 2008. Multi-
dimensional adaptive sampling and reconstruction for ray tracing. ACM
Trans. Graph. 27, 3, 1–10.

HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. H. 2001. The elements
of statistical learning: data mining, inference, and prediction. New York:
Springer-Verlag.

JENSEN, H. W. AND CHRISTENSEN, N. J. 1995. Optimizing path tracing
using noise reduction filters. In Winter School of Computer Graphics
(WSCG) 1995. 134–142.

KAJIYA, J. T. 1986. The rendering equation. SIGGRAPH Comput.
Graph. 20, 4, 143–150.

LEE, M. AND REDNER, R. 1990. A note on the use of nonlinear filtering
in computer graphics. IEEE Computer Graphics and Applications 10, 3
(May), 23–29.

LUXRENDER. 2011. http://www.luxrender.net/.
MAHALANOBIS, P. C. 1936. On the generalized distance in statistics. Pro-

ceedings of the National Institute of Sciences of India 2, 1, 49–55.
MCCOOL, M. D. 1999. Anisotropic diffusion for Monte Carlo noise re-
duction. ACM Trans. Graph. 18, 2, 171–194.

OVERBECK, R. S., DONNER, C., AND RAMAMOORTHI, R. 2009. Adap-
tive wavelet rendering. ACM Trans. Graph. 28, 5, 1–12.

PENG, H. 2007. Matlab package for mutual information computation.
http://www.mathworks.com/matlabcentral/fileexchange/14888.

PETSCHNIGG, G., SZELISKI, R., AGRAWALA, M., COHEN, M., HOPPE,
H., AND TOYAMA, K. 2004. Digital photography with flash and no-flash
image pairs. ACM Trans. Graph. 23, 664–672.

PHARR, M. AND HUMPHREYS, G. 2010. Physically Based Rendering:
From Theory to Implementation, Second ed. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA.

ROBERT, C. P. AND CASELLA, G. 2005. Monte Carlo Statistical Methods.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

RUSHMEIER, H. E. AND WARD, G. J. 1994. Energy preserving non-linear
filters. In ACM SIGGRAPH ’94. New York, NY, USA, 131–138.

SAITO, T. AND TAKAHASHI, T. 1990. Comprehensible rendering of 3-d
shapes. In ACM SIGGRAPH ’90. ACM, New York, NY, USA, 197–206.

SEN, P. AND DARABI, S. 2010. Compressive estimation for signal integra-
tion in rendering. Computer Graphics Forum 29, 4, 1355 1363.

SEN, P. AND DARABI, S. 2011a. Compressive rendering: A rendering
application of compressed sensing. IEEE Transactions on Visualization
and Computer Graphics 17, 487–499.

SEN, P. AND DARABI, S. 2011b. On filtering the noise from the ran-
dom parameters in Monte Carlo rendering (submitted). ACM Trans.
Graph. XX, Y.

SOLER, C., SUBR, K., DURAND, F., HOLZSCHUCH, N., AND SILLION,
F. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2, 1–12.

TOMASI, C. AND MANDUCHI, R. 1998. Bilateral filtering for gray and
color images. In ICCV 98. IEEE, 839.

XU, R. AND PATTANAIK, S. N. 2005. A novel Monte Carlo noise reduction
operator. IEEE Computer Graphics and Applications 25, 31–35.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 11

(a) Direct illumination only, 64 samples/pixel (for comparison) (b) Colors of MC input samples ×1000

(c)World position (d) Surface normals

(e) Texture value (f) Dependency on texture value

(g) Dependency on color (h) Output of our approach
Fig. 6. This figure breaks down some of the intermediate values of our algorithm to give some insight into how we obtain the result shown in the middle
image of Fig. 1. The values in sub-figures (b-e) are computed by averaging the appropriate sample value over each pixel.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

12 • P. Sen and S. Darabi

(a) Reference Monte Carlo (8,192 spp) (b) Input Monte Carlo (8 spp) (c) Our approach (RPF)
Fig. 7. This figure shows the CORNELL BOX scene with a diffuse ball and demonstrates our ability to filter global illumination effects, such as the color
bleeding from the colored walls that is visible in the ball’s shadow.

(a) Input Monte Carlo (8 spp) (b) Our approach (RPF)

Fig. 8. Here, the simple BUDDHA model is illuminated by a disk area light source. Our algorithm is able to remove the random noise from the area light
source but keeps the geometrical detail in the Buddha statue.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 13

(a) Input Monte Carlo (8 spp) (b) Our approach (RPF)

Fig. 9. These balls have a glossy reflection, demonstrating that our algorithm is able to perform reasonably with interesting BRDFs.

(a) Input Monte Carlo (8 spp) (b) Our approach (RPF)

Fig. 10. This DRAGONS scene features a fairly extreme depth-of-field effect by using a large aperture. Our algorithm produces a smooth result in the
out-of-focus regions but is able to preserve the in-focus detail.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

14 • P. Sen and S. Darabi

(a) Input Monte Carlo (8 spp) (b) Our approach (RPF)

Fig. 11. This scene has some chess pieces extremely out of focus in front of a checkered background. We see that our algorithm can blur the noise away in
the out-of-focus regions while keeping the in-focus features sharp, even if they lie in the circle of confusion of the out-of-focus objects.

(a) Input Monte Carlo (8spp) (b) Our approach (RPF)

Fig. 12. This scene combines a depth-of-field effect with motion blur to demonstrate that we can denoise both effects simultaneously.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 15

(a) Input Monte Carlo (8spp)

(b) Our approach (RPF)

Fig. 13. This figure shows how our approach can remove the motion-blur noise in the POOLBALL scene.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

16 • P. Sen and S. Darabi

(a) Reference (8,192 spp) (b) Input Monte Carlo (8 spp) (c)MDAS (8 spp)

(d) AWR (8 spp) (e) À-Trous (f) Our approach (RPF)

Fig. 14. CHESS scene with depth of field and an area light source. This is a larger version of Fig. 9 in the original paper. The results of multidimensional
adaptive sampling (MDAS) [Hachisuka et al. 2008] in (c) and adaptive wavelet rendering (AWR) [Overbeck et al. 2009] in (d) use the implementations of the
respective authors. The À-Trous method was proposed by Dammertz et al. [2010].

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 17

(a) Reference Monte Carlo (8,192 spp) (b) Input Monte Carlo (8 spp)

(c)MDAS (8 spp) (d) AWR (8 spp)

(e) À-Trous (f) Our approach (RPF)

Fig. 15. This TOASTERS scene has an area light source and depth-of-field effect. It is a larger version of Fig. 10 in the original paper.
University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

18 • P. Sen and S. Darabi

(a) Reference Monte Carlo (8,192spp) (b) Input Monte Carlo (8spp)

(c) Standard Gaussian blur (d)Monte Carlo denoising

(e) À-Trous (f) Our approach (RPF)
Fig. 16. Larger versions of the path-traced PERSIAN ROOM scene, shown in our original paper in Fig. 11. The Monte Carlo denoising method was proposed
by Xu and Pattanaik [2005].

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

Implementation of Random Parameter Filtering • 19

(a) Reference Monte Carlo (256 spp) (b) Input Monte Carlo (4 spp)

(c)MDAS (4 spp) (d) Sheared-filter motion blur (SFMB) (4 spp)

(e) Compressive integration (f) Our approach (RPF)

Fig. 17. Here we show the full images for the motion-blurred CAR scene whose insets are shown in Fig. 12 in the original paper. Note the artifacts of the
sheared-filter motion blur (SFMB) approach of Egan et al. [2009], in particular around the edges of the shadow under the car, and compare their result to
ours. Our algorithm is competitive even though their algorithm is specifically designed to handle motion blur and ours is a general technique. The results from
MDAS, SFMB, and compressive integration [Sen and Darabi 2010; 2011a] all use the implementations provided by the respective authors.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

20 • P. Sen and S. Darabi

(a) Input Monte Carlo (8 spp) (b) Equal time Monte Carlo (64 spp)

(c) Our approach (RPF) (d) Reference Monte Carlo (8,192 spp)

Fig. 18. This figure shows larger images for the ROBOTS scene with depth of field and path-tracing, shown in Fig. 17 in the paper.

University of New Mexico Technical Report, No. EECE-TR-11-0004, May 2011.

