
Computational Zoom: A Framework for Post-Capture Image
Composition (Supplementary Material)

1 PLANE-INDUCED HOMOGRAPHY
Given two cameras ci and ck , with projection matrices Pi = Ki [Ri |ti ]
and Pk = Kk [Rk |tk ], the homography induced by a 3D plane
π = [nT d] from ci to ck is given by [Hartley and Zisserman 2004]:

Hπ
i→k = Kk

(
R −

1
d
tnT

)
K−1i ,

R = RkR
T
i ,

t = tk − Rti ,

(1)

where R and t are the relative rotation and translation of camera ck
with respect to ci .

2 DEFINING MULTI-PERSPECTIVE CAMERAS
In this section, we describe in more detail how multiple pin-hole
cameras along with a few 3D planes, which we call dolly planes,
could be combined to form a single multi-perspective camera. To
achieve this, multiple pin-hole cameras are �rst transformed using
plane-induced homographies before they are merged to de�ne a
multi-perspective camera. We will �rst describe the e�ect of apply-
ing the plane-induced homography to a pin-hole camera and why
this operation is important in the context of computational zoom.
Later, we will describe how to de�ne a multi-perspective camera
using multiple pin-hole cameras.

2.1 E�ect of applying a plane-induced homography
Let us assume that we have two cameras with projection matrices
P1 = K1[R | t] and P2 = K2[I | 0] and a dolly plane de�ned as
ξ1 = [nT d]. We �rst show that applying a homography given by
H
ξ1
2→1 to the second camera aligns the images of scene point that

lies on ξ1 in both cameras. Assume X̃ to be a 3D scene point on
the plane ξ1 and X its homogeneous co-ordinate representation.
Then we have nT X̃ + d = 0. The images of X̃ under projections P1
and P2 are given by x1 = P1X = K1(RX̃ + t) and x2 = P2X = K2X̃

respectively. Let x ′2 = P̂2X where P̂2 = H
ξ1
2→1P2. Below we show

that x ′2 = x1:

x ′2 = H
ξ1
2→1P2X

= H
ξ1
2→1K2X̃

= K1
(
R −

1
d
tnT

)
K−12 K2X̃

= K1
(
RX̃ −

1
d
tnT X̃

)
= K1(RX̃ + t)

= x1.

Hence, images of an object that lies on the plane ξ1 are aligned
when imaged using P1 and P̂2. Modifying the camera projections
this way allows us to de�ne di�erent projection operators in front
and beyond the dolly plane while making sure that such transition
does not cause any alignment artifacts in the multi-perspective

image. Note that this relation holds true regardless of the camera
con�gurations used.

Next we analyze how this operation of modifying the camera
projection using plane-induced homography a�ects the image of
scene points that do not lie on the dolly-plane. To explain this
in context of our computational zoom application, we specialize
the extrinsic parameters of the cameras. We set up two cameras,
P1 = K1[R | t] and P2 = K2[I | 0], such that R = I and t = [0 0 −α]T .
Without loss of generality, we assume the intrinsic matrices K1 and
K2 to be identity. We de�ne the dolly plane to be aligned with z-axis
as ξ1 = [0 0 1 −β]T . Assume a 3D scene point given by X̃ = [x0 y0 z0]
that may not lie on the plane ξ1 and X is its homogeneous co-
ordinate representation.

We now describe the relationship between the images of scene
point X̃ under projection matrices P1 and P̂2 as denoted by x1 and
x ′2 respectively:

x1 = P1X =
1

z0 − α
[x0 y0 1],

x ′2 = H
ξ1
2→1P2X =

1

z0
(
1 −

α

β

) [x0 y0 1],
x ′2 =

(
1 −

α

z0

)
(
1 −

α

β

) x1 =m x1.

Note that for the camera con�guration discussed here, the epipo-
lar lines are always radial and the epipole lies at the intersection
of the principal axis and the image plane. Also, the corresponding
epipolar lines in two images align. As seen from the above equations,
x ′2 is multiplied by a factor m with respect to point x1. The factor
m indicates how far the point x ′2 lies from the principal point, as
compared to point x1. Note that the principal point here is simply
[0 0 1]T , as represented in 2D projective space.

When z0 = β , that is the scene point X̃ lies on the dolly plane,
then m = 1. This implies that the imaged points align. When X̃ lies
beyond the dolly plane,m > 1, which implies that x ′2 is farther from
the principal point as compared to x1. This means that the objects
that lie beyond the dolly plane are magni�ed when imaged using
projection matrix P̂2 as compared to P1. On the other hand, for the
objects that lie in front of the dolly plane, m < 1 and hence they
are shrunk when imaged under projection matrix P̂2 as compared
to P1. Note that the amount of magni�cation is the function of α ,
β as well as the depth of scene point z0. The magni�cation factor
deviates away from m = 1 as distance of objects from the dolly
plane increases.

To summarize, for the con�guration discussed here, images of
objects that lie on the dolly plane are aligned when projected under
projections P̂2 and P1. Objects that lie beyond the dolly plane are
magni�ed under projection P̂2 as compared to P1 while the objects
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Fig. 1. We can achieve a short-long multi-persepective configuration (shown
by the shaded region) by combining information taken by cameras at c1
and c2 using the homography between them induced by plane ξ1 (wri�en
as H ξ1

2→1). (a) For points X on the plane, their image in camera c2 (given by
P2X ) will be mapped by this homography (shown with the dashed purple
line) to the same point in camera c1, i.e., P1X = H ξ1

2→1P2X . Thus, objects
on the dolly plane will remain the same size in both images. (b) On the
other hand, objects behind the plane imaged by the camera at c2 will be
mapped by the homography H ξ1

2→1 to be larger when projected back to c1.
Therefore, objects behind the dolly plane taken from camera at c2 will look
larger in the final result. A similar explanation can be made for a long-short

configuration. Hence, projection P̂2 = H
ξ1
2→1P2 can be used to project points

imaged by camera c2 into the first camera in order to merge them together.

that lie in front of dolly plane are shrunk under projection P̂2 as
compared to P1.

We could now de�ne our multi-perspective camera using the two
pin-hole cameras given by projection matrices P1 and P̂2. We can
independently set di�erent projections in front and beyond the dolly
plane to control the magni�cation of objects in front and beyond
the dolly plane. The images of objects that lie on the dolly plane
remain unchanged under projection P1 as compared to projection
P̂2.

In the above analysis, we demonstrated the need for using plane-
induced homographies to modify the pin-hole projections so that
we could combine them to form a multi-perspective camera. In Fig. 1
we show intuitively through simple ray diagrams how the plane-
induced homography helps in de�ning a multi-perspective camera
projection.

For the analysis done in this section, we assumed a very speci�c
camera con�guration where there is no relative rotation between
the two cameras and the relative translation is only along z-axis. In
practice, however, for our computational zoom application we form
a multi-perspective camera de�nition using the images captured
by a hand-held camera that moves into the scene. Hence, there is
small relative camera rotation and the relative camera translations
is only approximately along the z axis. The above analysis holds
approximately even in this case. The plane-induced homography
still aligns the images of objects that lie on the dolly plane. This

ensures that discontinuities do not occur when we use di�erent
projection matrices to project scene points in front and beyond the
dolly plane. For the objects that lie away from the dolly plane we
still get approximately the same behavior where objects beyond
the dolly plane appear to be magni�ed when projected using P̂2 as
compared to P1 and a reverse e�ect for the objects that lie in front
of the dolly plane.

2.2 Defining multi-perspective cameras using
plane-induced homographies

Using the two projection matrices P1 and P̂2, along with dolly-plane
ξ1, we could de�ne two di�erent multi-perspective con�gurations
as shown below:

x =

{
P1X for X ∈ [c1, ξ1)
P̂2X for X ∈ [ξ1,∞)

, (2)

x =

{
P̂2X for X ∈ [c2, ξ1)
P1X for X ∈ [ξ1,∞)

. (3)

For the con�guration shown in Eq. 2, the objects in front of the
dolly plane are projected using the projection matrix P1, while the
objects beyond the dolly plane are imaged using the projection P̂2
and are magni�ed as compared to image under projection P1.

On the other hand, for the con�guration shown in Eq. 3, objects
in front of the dolly plane are imaged under projection P̂2, while the
objects beyond the dolly plane are imaged using the projection P1
and hence are shrunk as compared to image under projection P̂2.

The above con�gurations allow us to choose di�erent projections
in front and beyond a single dolly plane. As such we could de�ne
multiple dolly planes at di�erent depths in the scene and de�ne
di�erent projections between each consecutive pair of dolly planes.
Again, we use plane-induced homographies to align the projection
matrices at each dolly plane.

We now describe our general multi-perspective camera de�ni-
tion used for our computational zoom application. Assume we have
N − 1 dolly planes, where the ith dolly plane is represented by ξi .
Let the dolly planes be ordered so that ξ1 is the closest whereas
ξN−1 is the farthest dolly plane. Also, assume that we have N pro-
jection matrices that would be used to de�ne di�erent projections
between each pair of consecutive dolly planes. Note that these N
projection matrices need not be distinguishable: this means that
the same projection matrix could be used for di�erent regions. Let
ith projection matrix be represented by Pi . For our computational
zoom application we assume that the normals of the dolly planes are
along the positive z-axis and the pin-hole cameras used to de�ne the
multi-perspective camera de�nition follow approximately dolly-in
motion.

We de�ne a sequence S that speci�es the order in which di�erent
pin-hole projections are combined. We use camera with index S(K)
to de�ne projection between the dolly planes ξK−1 and ξK . The
projection operation for the scene points that lie between these
dolly planes is given by:

x = P̂KX if X ∈ [ξK−1, ξK ), (4)



where

P̂K =
K∏
i=1

H
ξi−1
S (i)→S (i−1)PS (K ). (5)

Since S(0) is not de�ned, H ξ0
S (1)→S (0), which adjusts the projection

of the �rst camera to incorporate desired transformations such as
scaling, translation, or an arbitrary homography, can be speci�ed
by the user. It can also be simply set to identity in order to use the
information from the �rst camera directly.

3 PHOTOMETRIC ERROR
Here we elaborate the photometric error equation as explained in
Sec. 4.1 of the main paper. The photometric error is given by:

Ephoto(πi (p)) =
∑

j ∈Ji (p)

ρ(Ni (p),Nj (q)), (6)

where ρ(·) is a similarity function given by:

ρ(Ni (p),Nj (q)) =
∑

x ∈Ni (p)

wi (x ,p)ϕi, j (x ,H
πi (p)
i→j x). (7)

The above summation computes patch distance between patches
from images Ii and Ij . ϕi, j is given by:

ϕi, j (x ,y) = (1 − α)min(‖Ii (x) − Ij (y)‖,τcol ) +
α min(‖∇I i (x) − ∇I j (y)‖,τдrad ). (8)

The weight function, wi (x ,p) = exp
(
−
‖Ii (x) − Ii (p)‖

γ

)
, acts as a

soft segmentation and decreases the in�uence of pixels that di�er a
lot from the central one. We use the default values for τcol , τдrad
and γ as de�ned by Galliani et al. [2015].

The outer summation aggregates di�erent costs by matching the
patch centered at p in Ii to patches in other images de�ned by set
Ji (p). If we knew the visibility information for the point p in Ii , then
we could de�ne the set Ji (p) for each patch accordingly and could
get the most certain estimate of plane parameter πi (p) obtained by
minimizing Eq. 6. Properly selecting such a set is very important.
Selecting a very small set of images such that point p in Ii is visible
in all selected images results in high uncertainty in plane parameter
estimation, while selecting a large number of images such that point
p in Ii is not visible in all the images may result in erroneous plane
parameter estimation.

For each reference image, Galliani et al. [2015] select M images to
compute patch distances. This means that, for each patch centered
around p in image Ii , they compute M patch distances using Eq. 7.
To handle visibility they assume that patch is visible in at-least
Q ≤ M images and hence they sort the M patch distances and
only aggregate least Q patch distances to get the photometric error
as shown in Eq. 6. Then the images belonging to the least Q patch
distances form our set Ji (p) for the patch in current reference image.

This approach, however, could possibly give a correct estimate
only for those plane parameters which are actually visible in at-least
Q images of the selected M images. In our multi-pass approach we
keep changing this parameter in each pass.

One �nal comment regarding the selection of M images that are
used to compute the set of initial patch distances with respect to

patches in our reference image Ii . Galliani et al. [2015] select M
images that make large angle with respect to the reference camera.
In our case of dolly-in motion, this strategy fails as the angle be-
tween viewing directions of the cameras is very small. Instead, we
use a simple strategy of selecting M images that are closest to the
reference camera. We set a high value for M = min{N /2, 15} for all
of the datasets used in the paper. Note that the set of selected M
images does not change in each pass of our multi-pass approach.

4 DERIVATION FOR SEGMENTATION MASKS
To synthesize images under our multi-perspective camera projection
it is important to understand the fact that most of the synthesized
result comes directly by sampling the rays from the source cam-
eras. We explain this by introducing the epipole consistency criteria
for our multi-perspective camera de�nition. Finding which multi-
perspective camera rays could be sampled directly from the source
cameras is trivial if we have accurate geometry. However, it is di�-
cult to make this assumption as getting accurate geometry is very
challenging. Since we are dealing with depth maps, here we explain
how to �nd which multi-perspective camera rays could be directly
sampled from the source cameras given accurate depth based image
segmentation. Here we assume that we have accurate depth-based
segmentation of very few source images with respect to very few
dolly planes (which are used to form our multi-perspective camera).
This is a more reasonable assumption as compared to availability of
accurate geometry.

Let us start with a simple multi-perspective camera projection
de�ned by two cameras P̂1 and P̂2 and a dolly plane. Also, let us
assume the images and depth-maps corresponding to these cameras
are I1, D1 and I2, D2 respectively. Without loss of generality we
assume that the images cover the whole �eld of view of the cameras
P̂1 and P̂2. The map Mi, j = 1{Di ≤zj } and its complementary Mc

i, j =

1{Di>zj } identify the pixels in image i that are in front and beyond
the dolly plane respectively. We assume that the segmentations
shown by Mi, j and Mc

i, j are accurate. Assume 1Ω represents an
indicator function that represents the multi-perspective image space.
Then we could represent this indicator function as:

1Ω = M1,1 +M
c
1,1.

The desired multi-perspective camera rays that belong to pixels
de�ned by the �rst term in the above equation intersect objects in
front of the dolly plane and hence could be trivially sampled from
the �rst camera. HenceM1 = M1,1. The camera rays correspond-
ing to pixels de�ned by the second term do not hit any objects in
front of the dolly plane. After crossing the dolly plane these rays
bend according to the projection de�ned by P̂2. These rays could be
further classi�ed as follows:

1Ω = M1,1 +M
c
1,1 � 1Ω

= M1,1 +M
c
1,1 � (M2,1 +M

c
2,1)

= M1,1 +M
c
1,1 � M2,1 +M

c
1,1 � M

c
2,1.

The desired rays that belong to pixels de�ned by Mc
1,1 � Mc

2,1 do
not hit any objects in front of the dolly plane, but hit objects that
lie beyond the dolly plane and are visible in the second camera as



represented by Mc
2,1. These rays could be sampled trivially from the

second camera and henceM2 = Mc
1,1 �M

c
2,1. On the other hand the

desired rays that belong to pixels de�ned by Mc
1,1 �M2,1 do not hit

any objects in front of the dolly plane and may or may not hit some
object beyond the dolly plane. This uncertainty arises because these
rays are occluded, as seen by the second camera due to the objects
that lie in front of dolly plane as represented by M2,1. We deem
these pixels as hole regions, which we �ll by warping information
from all the other images in the stack.

We could extend this analysis to the case of multi-perspective
camera de�ned by three projection matrices and two dolly planes.
M1 remains same as above while M2 will change. To �nd new
masks for the three-cameras case, we break down the last term in
above equation:

Mc
1,1 � M

c
2,1 = Mc

1,1 � M
c
2,1 � 1Ω

= Mc
1,1 � M

c
2,1 � (M2,2 +M

c
2,2 � (M3,2 +M

c
3,2))

= Mc
1,1 � M

c
2,1 � M2,2 +M

c
1,1 � M

c
2,1 � M

c
2,2

� (M3,2 +M
c
3,2).

By using Mc
2,1 � M

c
2,2 = Mc

2,2, we get:

Mc
1,1 � M

c
2,1 = Mc

1,1 � M
c
2,1 � M2,2 +M

c
1,1 � M

c
2,2 � M3,2

+Mc
1,1 � M

c
2,2 � M

c
3,2.

Desired rays belonging to the pixels de�ned by Mc
1,1 �M

c
2,1 �M2,2

do not hit any object in front of the �rst dolly plane, hit objects
that lie in between �rst and second dolly plane and are visible
in second camera. These rays could be sampled directly from the
second camera. And henceM2 = Mc

1,1 � Mc
2,1 � M2,2. Similarly,

M3 = Mc
1,1 � M

c
2,2 � M

c
3,2. The regions in 1Ω that are not covered

by any of theMi ’s are deemed as holes and synthesized by warping
information from other regions.

For a general multi-perspective camera de�nition formed using
N cameras and N − 1 dolly planes, the image masks are given by:

Mi =



M1,1 for i = 1( i−1∏
k=1
� Mc

k,k

)
� Mc

i,i−1 � Mi,i for i ∈ [2,N − 1]( i−1∏
k=1
� Mc

k,k

)
� Mc

i,i−1 for i = N ,

where we use the symbol
∏
� to denote the concatenation of element-

wise products.
Note that the list of all the desired rays that satisfy the epipole

consistency and could be sampled directly from the available source
cameras is not completely covered by the set ofMi ’s. The set of
Mi ’s only represent those desired rays that satisfy the epipole
consistency constraints and could be found given accurate depth-
based segmentation information for few images with respect to few
dolly planes as shown in above equation. To �nd all the desired
camera rays that satisfy the epipole consistency criteria, accurate
geometry is required.

REFERENCES
Silvano Galliani, Katrin Lasinger, and Konrad Schindler. 2015. Massively Parallel

Multiview Stereopsis by Surface Normal Di�usion. In IEEE CVPR. 873–881.
R. I. Hartley and A. Zisserman. 2004. Multiple View Geometry in Computer Vision

(second ed.). Cambridge University Press, ISBN: 0521540518.


	1 Plane-induced homography
	2 Defining multi-perspective cameras
	2.1 Effect of applying a plane-induced homography
	2.2 Defining multi-perspective cameras using plane-induced homographies

	3 Photometric error
	4 Derivation for segmentation masks
	References

