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Figure 1: We propose an offline, deep-learning approach to importance sample and improve convergence of path traced images, especially
at low sample counts. The two leftmost images are results comparing standard path tracing (PT) to sampling using our neural network at 4
samples per pixel (spp) on a test scene in Mitsuba [Jak10]. Here, our network is given only an initial 1 spp as input to generate a sampling
map that guides the remaining 3 spp. Unlike existing learning-based path-guiding methods, our network is used only in inference mode for
test scenes and does not require any retraining or optimization per scene. Our system focuses on faster convergence for low sample counts
in order to improve performance of post-process applications, such as Monte Carlo (MC) denoisers. On the right, we show how our method
can be coupled with an off-the-shelf MC denoiser [BVM∗17] to get better results.

Abstract
Although modern path tracers are successfully being applied to many rendering applications, there is considerable interest to
push them towards ever-decreasing sampling rates. As the sampling rate is substantially reduced, however, even Monte Carlo
(MC) denoisers–which have been very successful at removing large amounts of noise–typically do not produce acceptable final
results. As an orthogonal approach to this, we believe that good importance sampling of paths is critical for producing better-
converged, path-traced images at low sample counts that can then, for example, be more effectively denoised. However, most
recent importance-sampling techniques for guiding path tracing (an area known as “path guiding”) involve expensive online
(per-scene) training and offer benefits only at high sample counts. In this paper, we propose an offline, scene-independent deep-
learning approach that can importance sample first-bounce light paths for general scenes without the need of the costly online
training, and can start guiding path sampling with as little as 1 sample per pixel. Instead of learning to “overfit” to the sampling
distribution of a specific scene like most previous work, our data-driven approach is trained a priori on a set of training scenes
on how to use a local neighborhood of samples with additional feature information to reconstruct the full incident radiance at
a point in the scene, which enables first-bounce importance sampling for new test scenes. Our solution is easy to integrate into
existing rendering pipelines without the need for retraining, as we demonstrate by incorporating it into both the Blender/Cycles
and Mitsuba path tracers. Finally, we show how our offline, deep importance sampler (ODIS) increases convergence at low
sample counts and improves the results of an off-the-shelf denoiser relative to other state-of-the-art sampling techniques.

1. Introduction

Monte Carlo (MC) path tracing [Kaj86] can generate compelling
images by simulating the physically-based light transport of a
scene. However, producing noise-free results with the brute-force
method requires substantial computation because many light paths
(i.e., samples) must be evaluated to precisely estimate the light
transport. Nevertheless, thanks to significant progress in variance

reduction techniques, MC rendering has become increasingly com-
monplace in the past decade. For example, most of the high-end,
film production pipelines now employ path tracing, and even real-
time pipelines are moving towards physically-based rendering as
modern games have begun to use raycasting with dedicated hard-
ware. As a result, there is increasing demand to obtain these images
faster and with much fewer samples than before.
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Of all the variance reduction techniques proposed over the years,
MC denoising [SD11, SD12, RMZ13, KBS15], in particular, has
helped to fuel the recent, rapid adoption of path tracing. MC denois-
ers for both high-end production [BVM∗17, VRM∗18] and real-
time [CKS∗17, SKW∗17, SPD18] rendering systems have demon-
strated impressive results at low sampling rates for their respective
applications (16 samples/pixel for production, 1-2 samples/pixel
for real-time). Still, their results could substantially improve if they
could be provided input images that are more converged than the
ones they usually operate on. In other words, if we could speed
up convergence, these denoisers could potentially obtain the same
quality at even lower sampling rates or be able to denoise more
complex scenes with the current number of samples.

One orthogonal approach for effectively improving image con-
vergence is to importance sample paths during path tracing. Al-
though the subject has received considerable attention over the
years [VG95, LRR04, CJAMJ05, SA07], it is far from solved. Cur-
rent state-of-the-art approaches are based on learning the sam-
pling distribution directly in an online, per-scene fashion [VKv∗14,
DK17, MGN17, MMR∗18, ZZ18]. Of these, the more powerful
methods have tried to use deep networks to learn this distribu-
tion function [MMR∗18, ZZ18], but this requires costly scene-
dependent training time. Furthermore, these methods start learning
the distribution from scratch for every new scene, so they require
a significant number of samples and training time before they can
guide future samples. Thus, they focus on convergence at high sam-
ple counts (e.g., hundreds or thousands of samples per pixel). For
these reasons, none of the existing solutions were appropriate for
our problem setting of extremely low sample counts.

In this paper, we address this problem by proposing an offline,
deep learning framework for importance sampling in path space,
called ODIS, that works even on low sample counts. Specifically,
we wanted to design a system that could:

1. Generate an accurate sampling distribution for importance sam-
pling from a small set of initial samples, and,

2. Start guiding future samples as quickly as possible.

To do this, we observe that the incident radiance in local regions of
the scene is highly coherent. By gathering samples from these local
regions, we can use them to estimate an accurate function for the
incident radiance at any point in the scene, which can be converted
to a distribution for guiding the next bounce in the path. For this,
we leverage the power of deep learning to model the complex func-
tion that takes the local neighborhood of samples and reconstructs
the desired sampling distribution. Furthermore, while not required,
we found that training the network with a generative adversarial
network (GAN) [GPAM∗14] rather than the typical losses (e.g., `2
loss) can improve the quality of the reconstructions in some regions
and thereby impacts the quality of the final result.

By posing the problem as a reconstruction (i.e., interpolation)
of the incident radiance from existing samples instead of trying to
model it directly with a learned function that fits to the specific
scene like previous online methods, our distribution-generating
function no longer has to be scene-specific. Instead, we can train
our system to perform general incident radiance reconstruction of-
fline across a wide range of scenes. Once trained, our network can
then be applied to any new scene without retraining, so the only

expense at render time is the inference time for the network that
estimates the distribution function, which takes only 0.6 seconds in
total for the entire image. Furthermore, our network can be used by
the renderer to guide samples at low sample counts, even as early as
after 1 sample per pixel. To validate this, we demonstrate improve-
ments in both overall image convergence as well as with denoised
outputs using an off-the-shelf denoiser [BVM∗17] relative to cur-
rent state-of-the-art importance sampling techniques.

However, our approach does have some limitations. Since we
store our information in screen-space, it only uses our importance
sampling framework in the first bounce of illumination and so it
works best for scenes with direct and one-bounce indirect illumina-
tion. Furthermore, since we do not explicitly account for the BRDF
when importance sampling, it works better for diffuse scenes where
the reflected light field is not dominated by the BRDF. Despite
these limitations (discussed in Sec. 6), however, our method is able
to produce results that are comparable to state-of-the-art even in
scenes with multiple bounces or specular/glossy materials.

To summarize, our work makes the following contributions:

• We present the first offline, machine-learning approach for im-
portance sampling in path space. Our system is able to leverage
prior knowledge from a wide variety of previous renders in order
to reconstruct accurate incident radiance at the first bounce for
an arbitrary scene. This allows path guiding with as few as 1 spp
initial samples, something not possible with existing approaches.
• To our knowledge, we demonstrate the first practical use of gen-

erative adversarial networks (GANs) [GPAM∗14] within the MC
rendering pipeline. Although GANs have had success on a wide
variety of complex tasks, the general, strict requirements placed
on the final image tends to deter their use in computer graphics.
However, we observed that since the network predicts sampling
maps rather than final renders, we could utilize an additional
adversarial term in the loss to generate sharper maps that are
still constrained to be accurate to the ground truth, but that avoid
wasting samples in directions with no radiance contribution.
• We introduce the first large-scale rendering dataset containing

high-sample-count reference parameterizations of the incident
radiance across a wide variety of scenes and which is suitable
for training networks in path space.

2. Background and previous work

As is well known, the process of physically rendering a scene (as-
suming only surface reflection) can be expressed by the Rendering
Equation [Kaj86], written here in hemispherical formulation:

Lo(x,ωo) = Le(x,ωo)+Lr(x,ωo)

= Le(x,ωo)+
∫

Ω

Li(x,ω) f̂ (x,ω,ωo)dω. (1)

Simply, the outgoing radiance Lo from a surface point x in direction
ωo is the sum of the emitted radiance at the point Le and its reflected
radiance Lr, the latter of which is the integral of the product of
incident radiance Li and the cosine-weighted BRDF (written for
simplicity as f̂ ) over the entire hemisphere of incident angles ω.
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Modern path-tracers compute Eq. 1 with a Monte Carlo (MC) es-
timator that approximates the reflected radiance Lr at each bounce:

〈Lr(x,ωo)〉=
Li(x,ω) f̂ (x,ω,ωo)

Pω(ω)
, (2)

where Pω(ω) is the probability density function (PDF) used to ran-
domly sample the incident-radiance direction, ω. Note, we do not
have a summation over a number of samples in this MC estimator
since usually only one reflection sample is traced at every bounce,
and in this case we are ignoring the fact that path-tracers typically
sample direct lighting as well.

The variance of the estimator in Eq. 2, which shows up as noise
in the final image, can be greatly reduced by selecting a PDF Pω(ω)
that closely matches the integrand in Eq. 1, a process known as im-
portance sampling [VG95, Vea97, PJH16]. In the limit, when the
distribution is perfectly proportional to the integrand, the variance
from even only a single sample is zero, and the estimator produces
exact, noise-free results. Hence, there has been considerable inter-
est in the MC rendering community on ways to improve these sam-
pling distributions for path tracing. Given the amount of work on
importance sampling techniques (e.g., [LRR04,CJAMJ05,SA07]),
we focus on path-guiding methods most related to our own.

2.1. Path guiding

The most recent approaches in path guiding are exploring the use
of machine learning to help with importance sampling. The general
idea is to train or fit a model from scratch on a per-scene basis to
obtain a distribution that is proportional to the integrand from Eq. 1,
usually focusing on either sampling the incident radiance or the
full product with the BRDF. The differences in these approaches
essentially lies in how they propose to generate such a distribution.

For example, Vorba et al. [VKv∗14] use continuous Gaussian
mixture models (GMM) to represent incident radiance by fitting
them to the samples collected from a pre-rendering step using a spe-
cialized EM optimization. Additional improvements were achieved
by modeling the full product with the BRDF [HEV∗16] and by
considering Russian roulette and splitting when determining a light
path’s contribution [VK16]. Furthermore, Simon et al. [SJHD18]
also leverage the learning of GMMs to construct a guiding PDF
that accurately models the distribution of slow-to-converge regions
to better explore hard-to-find paths such as reflected caustics.

Dahm and Keller [DK17] introduced a novel reinforcement
learning technique that was effectively coupled with a renderer to
guide samples in a reward-driven way. In particular, this reward was
directly proportional to the amount of radiance discovered along a
specific path so that high radiance directions can be explored faster
to improve the convergence rate. The state-of-the-art approach by
Müller et al. [MGN17] built upon this with a dynamic data struc-
ture that parameterizes the incident radiance using a spatial octree
and angular quadtree that are updated or split as additional samples
are computed. Recently, Vevoda et al. [VKK18] used Bayesian on-
line regression for direct-illumination sampling and light-picking,
but it was not used for indirect bounces.

There are also recent approaches that utilize deep networks for
this problem. These methods adapt recent network architectures

Incident radiance reconstruction

Light sourceCamera

a c
b

Figure 2: Overview of our problem formulation. Given sparsely
sampled hemispheres of the incident radiance at various first-
bounce locations (e.g., points a and b), we must densely reconstruct
the hemisphere of incident radiance at a novel location (e.g., point
c). Here the solid arrows on the hemisphere represent existing sam-
ples, while the transparent arrows represent missing ones. Further-
more, the color of the line indicates the source or contribution of
radiance in a certain direction: zero radiance (black), directly from
the light source (yellow), or indirectly from the wall (green).

that utilize transforms based on non-linear independent compo-
nents estimation (NICE) [MMR∗18] or real-valued non-volume
preserving transformations (RealNVP) [ZZ18] for the problem of
path guiding by leveraging their ability to model accurate densi-
ties in high dimensional manifolds. However, these approaches re-
quire expensive training in the rendering loop [MMR∗18] or have
a scene-dependent training phase [ZZ18] that currently take on the
order of minutes to hours to train and are scene-specific.

Another learning-based approach that is more related to our own
is presented in a thesis by Jiang [Jia18], where a network generates
the incident radiance to be used in the final image. On the other
hand, our model predicts a radiance map that is used for impor-
tance sampling, which avoids artifacts in the final image and when
coupled with BRDF sampling is unbiased and will converge. Fi-
nally, although it is not used specifically for path guiding, it is worth
noting an earlier network-based approach by Ren et al. [RWG∗13]
which learns to render global illumination effects in real-time by
training many multilayer perceptrons (MLP) to model radiance re-
gression functions. This approach requires training MLPs to overfit
to each scene and each light source and is computationally expen-
sive to use beyond a small number of point light sources.

We categorize all of the aforementioned methods as “online,”
since they are essentially “overfitting” on a per-scene basis. In all
of these methods, scene-specific data is used to fit a distribution
or guide the optimization from scratch. If the scene is changed,
these algorithms need to be effectively retrained, so the cost of their
training has to be taken into account into the cost of rendering a new
scene, just like other scene-dependent costs such as precomputing
an acceleration structure. On the other hand, our method is the first
data-driven method for importance sampling in an offline manner.
In other words, we train offline on a variety of scenes to learn how
to estimate a good sampling distribution Pω(ω) from an input set of
local samples. In this way, our approach is more general and can be
used on any new scene without additional training. This not only
means faster rendering times, but it can also help guide samples
essentially from the start of rendering (e.g., after 1 spp).
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Figure 3: Overview of our algorithm at run-time. First, we save an initial buffer of a few samples at every pixel from the renderer (e.g,
1 to 8 spp) containing the first bounce incident radiance (from both direct and indirect sources), helpful auxiliary features (e.g., first and
second bounce normals and depth), and the incoming direction (as 2-D spherical coordinates). Next, for every pixel we want to reconstruct,
we gather neighboring radiance samples (and their features) and bin each sample based on its direction into the corresponding pixel’s
uniform grid that we chose to parameterize the incident radiance. We store samples for our gather step and then average them (integrate
over solid angle) within their respective angular bins. Since we work at low sample counts and with sparse data, we also save out a bit mask
representing whether a bin in our grid received any samples that we utilize through masked convolutions in our network. Our CNN then acts
on the sparse, uniform grid to produce a dense reconstruction of the incident radiance, which can then be normalized and used as a sampling
map to guide the rendering system for the remaining samples and generate the final image. Despite having limited samples and never being
trained on this scene, the reconstruction from the network accurately models both the direct and indirect illumination at the first bounce.

3. Offline deep importance sampling

The goal of our importance sampling approach is to improve the
convergence of MC renders by estimating a more accurate PDF
Pω(ω) for sampling the outgoing ray directions during path trac-
ing. Since a sizeable contribution to the final image comes from the
first bounce and to reduce the memory footprint of our cached ra-
diance data structure, our method focuses on importance sampling
this bounce and uses standard multiple importance sampling for
later bounces. Furthermore, unlike existing importance sampling
methods, our algorithm is specifically designed to work on low-
sample-count renderings where current approaches are unable to
accurately estimate the sampling distribution and therefore produce
extremely noisy results. Although our method still contains noise at
these low sampling rates, the level of noise is significantly reduced
as compared to other approaches so that it can be better removed
by a post-process MC denoiser (see Sec. 5).

Like some previous path-guiding methods [DK17, MGN17,
MMR∗18], our method estimates the light transport of a new scene
by first taking a few initial samples (i.e., tracing paths through the
scene). Our approach is based on the observation that the light
transport is highly coherent across local scene regions, so although
we have only measured a few samples per pixel, we can leverage
this coherency in a local neighborhood to improve our estimate of
the incident radiance at any point. In other words, we use our noisy
estimates of incident radiance across a local region to better esti-
mate (i.e., interpolate) the incident radiance at a particular scene
point at the center of the neighborhood (see Fig. 2).

In this way, our approach is similar to algorithms for MC de-
noising [SD12,RMZ13,KBS15,BVM∗17], which also leverage lo-
cal information (in that case, the colors of neighboring pixels) to
improve the reconstruction of the center pixel color value. It is
also related to work on light field interpolation and view synthe-

sis [LH96,BBM∗01,KWR16], where in our case we are measuring
noisy samples of the incident light field sparsely at various scene
positions and in a few directions and using that information to “in-
terpolate” the incident radiance at a particular point. Like those
methods, we can also leverage additional feature information from
the rendering system (e.g., depth and surface normal) to help guide
our estimation process to achieve more accurate results.

Inspired by the recent success of machine learning for MC
denoising [KBS15, BVM∗17, CKS∗17, VRM∗18], light-field in-
terpolation [KWR16], and for rendering in general [RWG∗13,
KMM∗17, ZWW18], we propose to use a deep network for esti-
mating the sampling PDF from our sparse sets of samples. Deep
networks are capable of representing complex, non-linear relation-
ships, and yet perform well with sparse data like we have in our
initial samples. The key design questions are then: 1) whether we
should train the network in an online fashion to somehow “learn”
the incident irradiance field for that scene directly, or rather simply
as an interpolator that is trained offline on a set of scenes to learn
how to use existing samples to fill in the “holes” and denoise† the
incident radiance field, 2) what the parameterization of the output
PDF from our network should be, and 3) what is the right architec-
ture and training process for the system. We discuss the first two
questions in the subsequent sections and the last one in Sec. 4.

3.1. Online vs. offline training

First, we must decide whether we want our network to learn to es-
timate the PDF in an online fashion as we compute samples, or be
trained as a pre-process on other scenes as some kind of incident ra-
diance “interpolator.” After some consideration, we found that the

† The estimated incident radiance is noisy since we only compute a single
path in these directions and have not fully evaluated the rendering equation.
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recent approaches of online training for a specific scene [VKv∗14,
MGN17], especially with deep networks [MMR∗18, ZZ18], were
not practical. First, these methods require a fairly large number of
samples (usually on the order of hundreds of samples per pixel) be-
fore they become effective since they train from scratch every time
a scene is rendered, and at low sampling rates there simply might
not be enough useful information to estimate a good PDF function.
Since we wanted our method to work at low sampling rates where
MC denoising methods usually fail, this was a significant problem.
Furthermore, the network-based online methods require significant
scene-dependent training times, which reduces the practical bene-
fits of importance sampling in the first place.

Part of the problem with the online approaches is that they do
not leverage any prior information on how nearby samples of in-
cident radiance (even noisy ones) might provide information about
the true incident radiance field at a particular point. Rather, these
methods are essentially “fitting” the PDF directly to the measured
samples, which in the case of a very small number of samples (e.g.,
1 spp) is extremely difficult to do accurately without prior knowl-
edge. For this reason, we instead propose to use an offline, data-
driven approach and train our network on a wide variety of scenes
in order to learn how to interpolate neighboring sample information
to reconstruct incident radiance and create more accurate PDFs for
sampling. This allows us to leverage knowledge from previous ren-
derings and enables us to use our importance sampling earlier in the
rendering process. Furthermore, since we perform all of our train-
ing offline, there is no expensive per-scene training cost that makes
many of the online methods impractical. Rather, the only cost of our
method is the feed-forward inference time to evaluate our network
and estimate the sampling PDF, which is not significant (around
less than a second for the results shown in the paper).

Because we are now optimizing over a large training set, it could
be difficult for the system to properly model the entire integrand of
Eq. 1 since it includes a BRDF term and thus is dependent on both
incident and outgoing directions. This would therefore require a lot
more training data to ensure we have enough examples. Further-
more, the function to be learned is more complex as the estimated
PDF is a 2-D function that is essentially conditioned on both the
position x and the outgoing direction ω0 (i.e., Pω(ω |x,ω0)) in or-
der to account for the dependency of the BRDF on the outgoing
direction ω0. Therefore, to simplify things, we only estimate the in-
coming radiance which is a 2-D function at each point in the scene
and make our PDF proportional to that. Although this assumption
essentially ignores the BRDF of the surface when importance sam-
pling, we find that this is sufficient as the incident radiance signifi-
cantly impacts many scenes, such as those where there are complex
light interactions due to occlusions or indirect illumination.

In summary, our network uses the initial sparse, noisy samples
of incident radiance to predict a dense probability distribution that
would ideally be proportional to the ground-truth incident radiance
across the support of the hemisphere. Next, we discuss our parame-
terizations of the hemisphere to perform this importance sampling.

3.2. Hemisphere parameterization

After deciding to use a pre-trained deep network to estimate our
sampling distribution Pω(ω), we now must determine how to rep-
resent the sampling distribution over the hemisphere so that we

can sample from it. We explored various options, such as us-
ing Gaussian mixture models [VKv∗14] or spherical harmon-
ics [RH01,SKS02]. However, we found that in order to leverage the
power of convolutional neural networks, the distribution of incom-
ing radiance is best parameterized on a uniform 2-D grid of resolu-
tion N×N. Each bin in this grid maps to spherical coordinates, θ

and φ , representing azimuth and polar angles, respectively, about a
full sphere parameterized over world space. Note we chose this pa-
rameterization rather than one over the local hemisphere since that
would have required transformations to align them and leverage
the coherence across neighboring samples. Moreover, we perform
sampling uniformly along the solid angle rather than in spherical
coordinates to avoid biasing samples towards the “up” direction.

3.3. Algorithm overview

To use this with our learning framework at run-time, we first send
out a very small initial batch of samples and choose the direction
of the subsequent bounce by sampling the hemisphere about the
initial intersection point. Note this sample can be acquired by uni-
formly sampling the full hemisphere or by importance sampling
the BRDF. At every pixel, we save each of our samples from our
initial budget (which is typically small, e.g., 1 to 8 spp) in mem-
ory; samples include the incident radiance from direct light sources
and indirect illumination, auxiliary feature information such as first
and second bounce depth and normals, and the incoming direction
in 2-D spherical coordinates. We gather the samples from a small
region around each pixel (more on this later), find the index into
the pixel’s fixed resolution grid using θ and φ, and average the in-
cident radiance and auxiliary features (discarding θ and φ) at the
corresponding bin. Since we are dealing with a small number of
samples, this grid is sparse and noisy because of indirect illumina-
tion. The sparse grid is then provided as input to the distribution
generation network which in turn produces a dense reconstruction
of the entire grid at that point. To more efficiently utilize the GPU,
we evaluate the network for all the points (i.e., across the entire
image) at once after this binning step (see Fig. 3 for an overview).

Since the samples we work with record incoming radiance, the
network is essentially reconstructing the incident radiance of the
entire hemisphere, which we assume is the distribution we desire to
sample from. In order to properly sample from the distribution, we
normalize the reconstructed output to generate a valid PDF. Con-
verting this PDF to a CDF allows us to perform standard 2-D im-
portance sampling to choose one of the bins in the grid, and then we
can randomly choose a direction within the bin as our sampling di-
rection. This way, as the resolution of the grid goes to infinity, each
bin will correspond to only a single direction. Note that we cur-
rently treat each bin in the map as a piecewise constant region of
the PDF and simply uniformly sample therein. More sophisticated
approaches such as interpolating the values across bins (i.e., piece-
wise linear approximations) are a subject of future work. Finally,
we use the predicted PDF to generate samples from our remaining
budget and use only these samples to create the final output image.
In other words, we use the initial sampling budget only as input for
the network reconstruction and discard these samples afterwards.

Overall, there are some practical considerations when utilizing
the grid parameterization and sampling strategy discussed above.
We found that importance sampling only the first bounce provided
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the best balance of improved sampling vs. computation costs as
considering the subsequent bounces often resulted in increased
computation/storage yet diminishing returns (e.g., from additional
samples to process and for resolving occlusions from non-screen-
space samples). Moreover, we found that the network does not need
to be evaluated at every pixel and instead can use a parameter that
skips pixels with a certain stride and interpolates the in-between
pixels (e.g., by simply bilinearly interpolating the four nearest radi-
ance reconstructions from our network). Due to the large coherence
of the incident radiance in the spatial domain, we found this did not
significantly impact quality, but provided substantial gains in speed.

Finally, if we consider only samples at the given pixel for input
to our reconstruction network, most bins in the grid will be empty
at low sampling rates and therefore the network will not be able to
generate anything reliable. Therefore, we again leverage the spa-
tial coherence of scenes and gather all the neighboring samples in a
k×k pixel region around the pixel in question before binning them
in the corresponding pixel’s grid as is, without warping to account
for the change in position. Although this is an approximation of the
incident radiance to the given point, it significantly reduces sparsity
to ~25% within the valid hemisphere and thereby improves recon-
struction quality. Note that as the sampling rate increases, we are
able to reduce the size of the window to gather from.

4. Network architecture and training
In this section, we detail components of our learning framework in-
cluding architecture design, optimization loss, and data acquisition.

4.1. Architectural considerations

Masking invalid regions

The first challenge we faced was sparsity from the low sampling
rate, which negatively impacted the optimization and required us
to inject knowledge about the sampling; specifically, we mask out
invalid regions so they do not contribute to the final output.

Specifically, since we are dealing with sparse data, there are
many bins in the input that never received a sample. The radiance
value of the bin is zero, yet the network convolutions cannot dis-
tinguish between the case that the bin is zero because there really
was no contribution or if it is simply zero because it was never
sampled in the first place. Furthermore, since we are also consider-
ing indirect illumination, there is additional noise coming from the
sampling at the second bounce. Having this inconsistency makes it
difficult for the network to pick up on patterns. To avoid this issue,
we use masked convolutions [LRS∗18] in the generator which will
perform a convolution but apply a binary mask containing either
0 or 1 in each bin corresponding to whether the bin received any
samples. This ensures regions that never received a value have no
gradient flow so that the weights are not affected.

Since the grid at every pixel is parameterized in world space and
over the entire sphere, half of the grid corresponds to invalid di-
rections (e.g., under the surface) that will always have zero contri-
bution since we are only considering importance sampling of the
reflected direction. Therefore, we mask out any contribution from
these regions of the grid for every pixel. This includes multiplying
both the network input and the network output by a mask that is
only on in the valid region of the hemisphere. Note that the current

pixel’s normals are used to find the valid hemisphere. In the case
there are noisy normals at the pixel, we average them first.

Input features
Since our goal is to convert the incident radiance into a PDF, we
only need the magnitude of the radiance and so we simply aver-
age across the RGB channels to produce a single-channel repre-
sentation of incident radiance. Each rendered sample also contains
the auxiliary features of depth (1 channel) and shading normal (3
channels) for both the first and second intersection points. Thus,
our input grid has a total of 9 channels. We omit the sample’s 2-D
spherical coordinates from our network input, as they are already
implicit in the grid parameterization. We also empirically found
that they did not improve network performance when included as
extra input channels. When reusing samples from adjacent pixels,
it could be the case that a sample is binned from intersections on
completely different objects that do not share the same incident di-
rections. By including these additional features, the network has
more information to use to discriminate against bins. For example,
if samples are gathered from different objects, certain features, such
as normals can help the network identify differences across bins to
weight each one’s contribution to the reconstruction appropriately.
We experimented with these input features in Sec. 6.

Network design
For our radiance reconstruction network, we use a popular encoder-
decoder architecture. The encoder portion will take the sparse,
noisy grid of a particular pixel and extract features across multiple
scales until it generates a latent feature vector at the lowest scale.
The decoder is typically designed as a mirror image of the encoder
and will take this latent feature vector and extract features back up
all the scales to generate an output with the same spatial resolution
as the original, but now contains a dense reconstruction of the inci-
dent radiance. This network is shown in the left portion of Fig. 4.

Although not a strict requirement, we also found using a gener-
ative adversarial network (GAN) [GPAM∗14] framework, in addi-
tion to a standard `1 or `2 loss, helped produce sharper reconstruc-
tions, while still maintaining accuracy relative to the ground truth
incident radiance map. The general idea of a GAN is to have two
competing networks: a generator and a discriminator. More specif-
ically, the generator produces an output that is sent to a separate
discriminator network that determines whether the output is a sam-
ple from the true underlying distribution that the generator is trying
to model. As training goes on, the generator continues to improve
its output to fool the discriminator, while the discriminator also be-
comes better at discerning examples outside the true distribution.
Once training is complete, the discriminator is discarded and only
the generator is required for all future inferences.

GANs are a popular choice for many complex applications be-
cause they typically can output sharp content, especially compared
to standard per-pixel metrics such as MSE, which tend to have blur-
rier results. Yet, GANs are not used for physically-based render-
ing because of the strict requirements on being able to produce an
artifact-free, final render. However, we avoid such issues in our sys-
tem by using a GAN for generating the sampling map, rather than
the final image directly. Coupling these maps with BRDF sampling,
as in previous work, ensures the resulting render will be unbiased.
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Figure 4: An overview of the two network components of our full approach. The radiance reconstruction network (blue) generates a dense
reconstruction of the incident radiance at the first bounce using only a sparse set of initial samples. During training, the network learns to
match a high-sample-count reference of the incident radiance based on our grid parameterization. Furthermore, although not required, a
discriminator (green) can be used to improve the quality of the reconstruction and, ultimately, the final rendered output. Note the discrimi-
nator is only used during training and then discarded. After the offline training is complete, the network can be used with any new test scene
without any additional per-scene, online training. Specifically, the network is used in inference mode to reconstruct the incident radiance for
an arbitrary scene, which can then be converted to a sampling map to guide the renderer for its remaining sampling budget.

Figure 5: Reference images from our 82 scene Blender training set.
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Figure 6: Convergence plots for our validation set at various angu-
lar resolutions. We use 32× 32 in our pipeline as it performs well
without adding significant overhead to overall render times.

Within the GAN framework, our radiance reconstruction net-
work can be thought of as our generator. Meanwhile, for our dis-
criminator, we use an architecture that is similar to the encoder por-
tion of the generator and has convolutions across multiple scales.
However, the coarsest scale has a fully connected layer with a sig-
moid activation to output the confidence that the dense incident ra-
diance map that it is given belongs to the true distribution (i.e., the
distribution of reference maps across all scenes in the training set).

Both networks are shown in Fig. 4, while implementation details
are provided in Sec. 4.4 (see architecture table in the supplemen-
tal). Through the rest of this section, we describe our full approach
with a GAN, but as shown in Sec. 5, it is not a requirement for our
approach to work. Furthermore, in Sec. 6, we provide additional
analysis on the improvements stemming from using a GAN-based
approach. To train with or without the GAN, we simply add/remove
the discriminator and change the loss function, described next.

4.2. Loss

As noted in Sec. 3, the network outputs a dense reconstruction of
the incident radiance parameterized as a uniform grid. This is nor-
malized to create a valid sampling distribution to choose the next
bounce direction. We chose not to directly optimize for the PDF
since it is harder for the network to learn how to map noisy, raw
radiances or their corresponding PDFs to a reference distribution.

Therefore, working directly with radiance values means our data
has a very large dynamic range that can negatively impact net-
work optimization as well as fail to match dark areas that con-
tribute little to the overall error, yet still have non-zero radiance.
Thus, we apply a transformation, similar to that of recent denoising
works [BVM∗17, VRM∗18], to bring the data into a more reason-
able range. However, instead of the typical logarithmic transforma-
tion, we found better performance when first applying a range com-
pressor, as is done in audio processing and, recently, for learning-
based high dynamic range imaging [KR17]. Specifically, we apply

Ty =
log(1+µy)
log(1+µ)

, (3)

where µ influences the amount of compression (µ = 5000 in our
implementation). Using this allows the dark and bright regions to
have similar importance when minimizing the reconstruction loss.
During testing, we apply the inverse range compressor to restore
the relative intensities of the reconstructed incident radiance.

After accounting for the dynamic range, we utilize the following
general loss that has been successfully applied for training gener-
ative adversarial networks (GAN) [GPAM∗14] in various applica-
tions (e.g., super-resolution [LTH∗17]),

L(Ty,Tŷ) = Laccuracy(Ty,Tŷ)+αLsharpness(Ty,Tŷ). (4)

The first term is a metric that minimizes average per-pixel dis-
tance and, in the context of our application, enforces accuracy be-
tween incident radiance maps: the range compressed network pre-
diction, Ty, and the reference, Tŷ. Meanwhile, the second term en-
sures a sharp output, as blurry maps can result in wasted sam-
ples (e.g., across occlusion boundaries) by using one of many po-
tential adversarial losses from other GAN methods (e.g., least-
squares [MLX∗17], Wasserstein [ACB17,GAA∗17]). We found `1
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and the standard cross-entropy losses [GPAM∗14] worked best as
Laccuracy and Lsharpness respectively, with α at 4.0× 10−3. Note, if
it is desired to use our method without adversarial training (i.e., the
reconstruction network only), one would simply set α to zero for
training; this setup corresponds to the “Ours (NoGAN)” results in
Sec. 5 and Sec. 6. Overall, our full loss with these two terms en-
ables the reconstruction network to produce dense maps that are
both accurate and sharp relative to the reference.

4.3. Training data

For our training data we collected 82 training scenes for Cycles,
Blender’s built-in production path tracer [Ble18] (see some sample
scenes in Fig. 5). We made them all be diffuse-only to eliminate
influence from the BRDF and thereby focus on the dense recon-
struction of incident radiance without having to account for ma-
terial attenuation, which facilitates network training. Furthermore,
we render all scenes with direct and one-bounce indirect illumina-
tion as we importance sample the first bounce only.

Our ground truth grids were generated with a resolution of 32×
32 and with 64K samples, which corresponds to 64 samples per
bin. Specifically, at the first bounce we loop through every bin in
our grid and send out 64 uniformly-distributed samples to get the
average radiance integrated over the bin’s solid angle.

To determine the angular resolution to use for representing our
sampling distribution, we generated ground truth sampling maps
for our validation set in Cycles at 8×8, 16×16, 32×32, 64×64,
and 128×128 resolutions. We then used these maps during render-
ing at all power-of-two sample counts between 8 and 1024 spp and
calculated the average MrSE and SSIM of the final rendered image
(see Fig. 6). Note the plots were generated by rendering our valida-
tion set five times and averaging the error.‡ Moreover, to account
for the variance across scenes, we normalize each error by the error
of the 8 spp input image before averaging. As expected, conver-
gence improves with increasing angular resolution. However, there
seems to be only marginal improvements beyond 32× 32, yet the
cost of inferencing increases significantly (i.e., the amount of com-
putation scales linearly with resolution due to the sliding kernels of
convolutional networks). Therefore, we chose to use 32×32 in our
system as it provided good performance yet inferencing was still
fast enough to only add a small overhead to rendering.

Since there is significant correlation across pixels and to save on
compute time, we calculate the ground truth for a single pixel in
every 8× 8 region. Even with striding our scenes are high enough
resolution that we still get on average approximately 16K usable
patches per scene, giving us over one million total training patches.

Finally, the input data is rendered with 8 samples per pixel using
uniform sampling over the valid hemisphere. Next, the input to the
network is obtained by binning all the samples in an 11× 11 win-
dow (or a 21× 21 window for extremely low sample counts, i.e.,
below 8 spp for the initial sampling rate) around the current pixel.

We plan to release our large dataset, including both the scenes
and training data, to inspire future research.

‡ We use a trimmed MSE where the top 0.01 percent of pixels are removed
in order to avoid skewing statistics from outliers/fireflies.

4.4. Implementation details

We implemented our method in TensorFlow [AAB∗15] and used
NVIDIA M6000 GPUs for training/testing. We found pre-training
as in some GAN approaches [LTH∗17] was not necessary and we
trained Laccuracy and Lsharpness from scratch simultaneously until we
found a good optimum after 820K iterations. We used mini-batches
of size 16 and both the generator and discriminator networks were
optimized using ADAM [KB14] and a learning rate of 1.0×10−4.

For our generator, we use the popular encoder-decoder archi-
tecture with three scales. The encoder portion starts with 16 fea-
ture maps and increases by a factor of two to reach 256 in the
coarsest scale using average pooling as the downsampling scheme.
Meanwhile, the decoder portion is the opposite and goes from 256
to 16 feature maps using transposed convolutions of stride 2 for
the upsampling. The final output has only a single channel and is
the same resolution as the input. At every scale of both the en-
coder and decoder we have two convolutions (using Xavier initial-
ization [GB10]) with residual connections across them and Leaky
ReLU (LReLU) (α = 0.2) activation functions [XWCL15] in be-
tween. In addition to residual connections, we have skip connec-
tions from the encoder to the decoder, as we found both of these
strategies helped promote gradient flow throughout the network.

Meanwhile, our discriminator is mostly made up of repeated
convolution blocks at each scale, each of which contains a convolu-
tion (using truncatedN (0,0.2) initialization), batch normalization,
and a LReLU (α = 0.2) activation function. The number of the fea-
ture maps starts with 16 in the finest scale, increases by a factor
of 2 in each scale, and ends at 128 in the coarsest scale before a
dense layer of size 256 that outputs a single final value correspond-
ing the confidence that the input was a real sampling map. We use
a sigmoid activation function in the output layer and use average
pooling when downsampling the spatial resolution.

5. Results

5.1. Setup

To evaluate the performance of our offline deep importance sam-
pler (ODIS) and to illustrate its ease of use, we integrated our net-
work within two rendering systems: Blender/Cycles [Ble18] and
Mitsuba [Jak10]. In general, for a given scene, we render a fixed
number of initial samples (e.g., typically 1 to 8 samples per pixel)
that can be either uniformly or BRDF sampled about the hemi-
sphere of the first intersection point at each pixel. As discussed
in Sec. 3, we save out direct and one-bounce indirect illumination
for each of these samples. Then, after binning these samples into
our sparse, grid representation, we do a forward pass of network
inference, without any online training, to reconstruct the full dense
hemisphere. This output map is then converted to a PDF/CDF for
importance sampling the remaining sample budget of the render.
The network is fixed during rendering and no scene-specific train-
ing occurs. Furthermore, the initial samples are used only as the
input for the network to reconstruct the sampling map, and their
values are never used directly in the final output.

Our approach is orthogonal to light picking/next-event estima-
tion (NEE), so for all methods and all comparisons shown we use
full multiple importance sampling (MIS) to show the overall con-
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Scene Path OLPM PPG Ours (NoGAN) Ours (ODIS)
Trim Non-trim Timing Trim Non-trim Timing Trim Non-trim Timing Trim Non-trim Timing Trim Non-trim Timing

Veach Ajar 18.89 89.46 2.9 s 1.67 46.44 26.7 s 16.14 64.93 3.2 s 3.07 39.38 3.5 s 2.54 9.73 3.5 s
Classroom 6.52 8.01 1.9 s 6.01 39.68 26.6 s 9.89 14.32 2.1 s 4.04 45.03 2.5 s 3.76 13.50 2.5 s
Dining Room 12.60 22.17 2.6 s 16.95 119.18 23.8 s 18.44 49.84 2.8 s 5.72 537.96 3.2 s 4.12 31.54 3.2 s
Living Room 9.15 43.83 2.0 s 9.47 73.17 32.6 s 18.17 81.11 2.4 s 5.76 212.25 2.6 s 5.09 76.53 2.6 s
Kitchen 25.11 45.04 9.6 s 16.17 95.58 34.0 s 30.15 97.58 9.9 s 9.54 426.42 10.2 s 8.79 27.32 10.2 s

Table 1: Error and timing comparisons across methods for the Mitsuba test scenes from Fig. 8. For each method, the left and middle
columns are trimmed and non-trimmed versions of MrSE, respectively, and the right column is the total timings (including scene-specific, pre-
processing steps) in seconds. High radiance samples (spikes) largely impact metrics such as MrSE, so we report trimmed errors throughout
the paper. Moreover, our network inference adds only a small overhead to the render cost. See full reports with trimmed/non-trimmed errors.

Ours (8 spp total, 1 spp initial) Path Ours (ODIS) Ref. (16K spp)

MrSE 3.72 1.95
1 − SSIM 0.94 0.89

MrSE 11.72 7.21
1 − SSIM 0.92 0.84

Figure 7: Results compared to standard path tracing for two test
scenes in Blender/Cycles that were not included in our offline train-
ing. Both methods use light-picking, while our approach uses our
network to select the next bounce direction instead of BRDF sam-
pling. Even with only an initial 1 spp input buffer, our network is
able to reconstruct a dense sampling map to guide rendering for
the remaining 7 spp and produce a significantly more converged
result.

vergence improvements in the typical use case.§ Specifically, a sin-
gle sample consists of direct light sampling and either the method’s
proposed sampling strategy or the standard sampling of the bidirec-
tional reflectance distribution function (BRDF) as determined by
a parameter. For our approach, we used no BRDF sampling (i.e.,
light-picking and our network-based sampling only) in our com-
parisons, unless otherwise stated (i.e., Sec. 5.3.1 and Fig. 13), in
order to demonstrate the benefit of our learned approach. Mean-
while, for all other methods, we show their best parameter sets in
the paper, based on the lowest average error across our test scenes,
and provide the results of the full parameter sweep in the supple-

§ The error plots from Fig. 6 are the only results without MIS, since the
experiment was to compare the performance of various angular resolutions,
independently of light-picking.

mental.¶ It is worth noting that in practice all of the approaches
compared here, including ours, would need to utilize some BRDF
sampling to guarantee convergence at high sample counts.

Our method was designed to importance sample the bounce di-
rection of primary rays, so we revert back to standard MIS for the
second bounce. The scenes in this section are diffuse and are ren-
dered with direct and one-bounce indirect illumination. Despite not
having interactions with glossy materials, the evaluation scenes in-
corporate challenging cases with multiple light sources of different
strengths and varying degrees of visibility resulting from complex
scene occlusion. Moreover, we target single-digit sample-counts
with extremely sparse information and severe noise, which make
the task of predicting next-bounce directions even more difficult.

For quantitative evaluations, we report in the paper the
commonly-used mean relative squared error (MrSE) and the pop-
ular, perceptually-based Structural Similarity Index (SSIM)††, and
in addition include mean square error (MSE), mean absolute per-
centage error (MAPE), and `1 in the supplemental. Note, all meth-
ods are affected by fireflies, so in order to draw meaningful ob-
servations about convergence and performance, we use a trimmed
metric where we discard the highest 0.01% of pixel errors when
calculating the average for all methods when reporting metrics in-
fluenced by outliers such as MrSE [BVM∗17,VRM∗18]. However,
in Table 1, we report both trimmed and non-trimmed versions of
MrSE for reference. Please see the supplemental reports to view
these results and more in full resolution using our interactive image
viewer including both trimmed and non-trimmed results.

5.2. Blender/Cycles

We first apply our method in Blender’s production-quality path
tracer, Cycles [Ble18], on test scenes that were not part of the train-
ing set. Fig. 7 shows comparisons between our approach and stan-
dard, unidirectional path tracing with MIS at a total budget of 8 spp.
For these scenes, we render an initial 1 spp buffer that our network
uses to generate a sampling map to guide the renderer for the re-
maining 7 spp. Note these 7 spp are used to generate the final image

¶ We choose between three options: no BRDF sampling, fifty-fifty split be-
tween the method and BRDF sampling (the default parameter of both Vorba
et al. [VKv∗14] and Müller et al. [MGN17]), or full BRDF sampling for the
second bounce. Note, standard path tracing always uses BRDF sampling.
†† Since higher SSIM scores correspond to closer images, we report 1-
SSIM for consistency with our other metrics.
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Ours denoised (4 spp total, 1 spp initial) Path OLPM PPG Ours (NoGAN) Ours (ODIS) Ref. (64K spp)
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Veach Ajar MrSE 20.42 (2.27) 1.67 (0.95) 16.41 (3.14) 3.14 (1.55) 2.55 (1.45)
1 − SSIM 0.99 (0.73) 0.89 (0.13) 0.99 (0.62) 0.94 (0.16) 0.93 (0.14)

D
en
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d
R
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r

Classroom MrSE 6.48 (0.65) 6.23 (0.81) 9.96 (0.81) 4.17 (0.66) 3.73 (0.64)
1 − SSIM 0.93 (0.35) 0.92 (0.38) 0.94 (0.46) 0.91 (0.26) 0.91 (0.26)

D
en

oi
se

d
R

en
de

r

Dining Room MrSE 12.85 (2.61) 16.41 (2.79) 19.64 (2.80) 5.66 (2.61) 4.14 (2.58)
1 − SSIM 0.89 (0.19) 0.89 (0.29) 0.91 (0.37) 0.86 (0.19) 0.84 (0.16)

D
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Living Room MrSE 9.08 (0.35) 9.45 (0.37) 17.85 (0.59) 5.88 (0.32) 5.15 (0.31)
1 − SSIM 0.88 (0.22) 0.86 (0.23) 0.90 (0.43) 0.85 (0.21) 0.86 (0.20)

D
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Kitchen MrSE 24.88 (7.25) 16.10 (7.07) 31.13 (7.38) 9.6 (6.99) 8.82 (6.99)
1 − SSIM 0.92 (0.44) 0.90 (0.28) 0.93 (0.60) 0.87 (0.25) 0.87 (0.23)

Figure 8: Equal-sample comparisons with state-of-the-art importance sampling techniques in Mitsuba including OLPM [VKv∗14] and
PPG [MGN17]. The top row shows the rendered output using the sampling technique, while the bottom row demonstrates the results of
also applying KPCN [BVM∗17], an off-the-shelf MC denoiser. Both MrSE and 1-SSIM are reported below for the rendered output and the
denoised result (in parentheses). Ours and Ours (NoGAN) are relatively more converged, which significantly improves the final denoised
output. Although the NoGAN version outperforms previous methods, there are still regions where it underperforms relative to our full
algorithm. Our networks were trained with Blender/Cycles scenes and were not retrained for Mitsuba. Full images are in the supplemental.
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Figure 9: Convergence plots among the different importance sam-
pling techniques averaged across all of our Mitsuba test scenes for
MrSE and 1-SSIM. In particular, both Ours and Ours (NoGAN)
perform favorably relative to previous approaches, especially at
low sample counts. However, the NoGAN version of our method
still slightly underperforms relative to our full approach.

and the initial 1 spp used by the network is discarded, while path
tracing uses the full 8 spp to generate its result. The images have a
resolution of 1280×1024 and the network is inferenced at a stride
of 8, using bilinear interpolation for the in-between pixels.

The Classroom scene is a difficult case to render with complex
direct and indirect illumination since there are no emitters on in the
room itself. Instead, there are four large, bright area light sources
that are all at least partially occluded. Essentially, each primary ray
has to decide which direction to leave the room (e.g., the door on
the left or the window on the right). The path tracing result is ex-
tremely noisy as it has to both pick one of the emitters as well as
the position on the light, both of which have a high likelihood of
being blocked. Meanwhile, our network’s dense prediction of the
incident radiance provides a more reliable way of finding which
are the best paths out of the room and it even enables recovery of
part of the map texture from the nook, that is otherwise lost with
path tracing. Note, the inferred sampling map for this scene, shown
in Fig. 3, demonstrates the network’s robustness to sparse samples.

Similarly, the Gym scene also has all of its six light sources off-
camera and outside of the large building. It is challenging to find
which light source to sample from and which path out the windows
has the most contribution. Furthermore, various structures, such as
the beams in the rafters on the ceiling, provide additional occlusion
that the path tracer cannot explicitly avoid through simple light and
BRDF sampling. Meanwhile, our approach can model the scene’s
visibility more accurately to avoid such structures when selecting a
path and gives a relatively more converged result (see Fig. 7).

5.3. Extrapolation to Mitsuba
Next, we demonstrate the robustness and ease-of-integration of our
approach by taking the network trained on Blender data and plug-
ging it directly into the Mitsuba rendering system [Jak10]. The only
instrumentation that is required is slightly modifying the standard
sampler to importance sample from our network generated map or
the BRDF during MIS based on the aforementioned user-set param-
eter. More importantly, we do not retrain the network and use the
same weights as before with Blender/Cycles to generate all results.

We compare against standard, unidirectional path tracing as well
as state-of-the-art online sampling techniques: online learning of
parametric mixture models (OLPM) [VKv∗14] and practical path

guiding (PPG) [MGN17]. The OLPM method fits samples to Gaus-
sian mixture models as a way to parameterize the incident radiance
for importance sampling. Meanwhile, PPG instead uses a dynamic
spatial octree and angular quadtree as its representation, which are
continually refined with additional samples during rendering.

For comparisons, we used the author-released implementations
and their default values for most parameters. However, since we
primarily target sample-counts that are relatively lower than what
these methods were optimized for, we performed parameter sweeps
to find the best settings for each method at all sampling rates. The
first of which is the optimal BRDF sampling fraction mentioned
earlier. We repeat this parameter sweep for both bounces since, for
example, it might be more beneficial to exclusively use a method’s
technique at the first bounce and then switch to BRDF sampling at
the next bounce, as we do in our approach.

Furthermore, for Müller et al. [MGN17], we also explore one
of their parameters that controls the number of samples used dur-
ing their training passes, which can be a sensitive parameter when
dealing with only a few spp for the total budget. Finally, for Vorba
et al. [VKv∗14], we used 30 pre-training passes and 300,000 for the
number of importons and photons, the default parameters found in
their released scenes. To their advantage, we do not count these to-
wards the sample budget even though they are equivalent to tracing
paths through the the scene. For simplicity, we include only the best
results from the competing approaches in the paper and provide the
results from all the parameters in our sweep in the supplemental as
well as the selected best parameters from each sampling rate.

Finally, to demonstrate the benefits of using a GAN in our full
approach, we provide both quantitative and qualitative results with
“Ours (NoGAN).” This network has the same architecture and
training setup as our full proposed approach except it is trained us-
ing only an `1 loss (i.e., the α parameter from Eq. 4 is set to zero)
and it is trained without the discriminator network from Fig. 4.

One of the main benefits of our approach is significantly im-
proved convergence at low sample counts which can be utilized by
other applications further downstream in the rendering pipeline. To
demonstrate this, we took KPCN [BVM∗17] a recent, off-the-shelf
Monte Carlo (MC) denoiser and applied it to the rendered result
of each method to show that improved convergence corresponds to
improved denoising performance. Note that KPCN is not retrained
and is applied with fixed weights, but we verified that it gave com-
parable results in Mitsuba for the same scenes and sample counts
shown in the original paper with the Tungsten [Bit16] renderer.

In Fig. 8, we show equal-sample comparisons on five test scenes
from Mitsuba at resolution 700× 400. The raw output from the
renderer is shown in the top row, while the denoised output from
KPCN is in the bottom row. All methods are given a total budget
of 4 spp to use as desired. For our approach, we discard the ini-
tial 1 spp buffer after our network inference, as in Fig. 7, but this
time we only render three additional samples. These results along
with additional results using a higher 8 spp budget are all contained
in the supplemental materials. Note that since our method operates
in pixel-space, we report traditional samples per pixel, but some
methods (e.g., Müller et al. [MGN17]) are parameterized in world
space and are resolution-independent. Recent work [MMR∗18] re-
port sample count as mega samples (MS) instead to reflect this, but
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Ours (1024 spp total, 8 spp initial) Path OLPM PPG Ours (NoGAN) Ours (ODIS) Ref. (64K spp)

Classroom MrSE 0.45 0.45 0.45 0.45 0.44
1 − SSIM 0.34 0.29 0.28 0.25 0.24

Dining Room MrSE 2.39 2.43 2.48 2.41 2.41
1 − SSIM 0.18 0.22 0.30 0.14 0.13

Figure 10: We compare favorably against state-of-the-art approaches designed for high sample count renders (e.g., 1,024 spp shown here).
Our results use only 8 initial samples to reconstruct the map and guide the remaining samples. The network is applied only once and is not
trained on these scenes. Best to zoom into the electronic version to see the differences. Full results can be found in the supplemental.

they still tend to focus on significantly higher sample counts than
shown here (e.g., ~100 MS vs ~1 MS for the results in Fig. 8).

In the first row, we show results on the Veach Ajar scene, a noto-
riously challenging scene in terms of convergence since almost the
entire scene is lit by indirect illumination flowing through a cracked
door. Since almost no light can be obtained at the first bounce and
most of the contribution comes from the second bounce, it is impor-
tant that the sampling strategy guide rays to have their next bounce
close to the door. BRDF and light sampling are not very effective
in this scenario so both PPG and path tracing are slow to converge.
On the other hand, Ours, Ours (NoGAN), and OLPM perform per-
form reasonably in terms of the denoising results, especially when
considering the input samples.

However, although OLPM has regions including the wall that
converge well, there are other regions with artifacts such as the
large dark holes by the table where the method cannot match paths
between the camera and the light during the method’s bidirectional
training stage and which are too severe to reconstruct with the de-
noiser used. To be sure this was correct, we verified that the OLPM
implementation converged to the correct result given long enough
training times (see additional details in the supplemental).

It is also worth noting our improvements on the difficult Kitchen
scene. The limited illumination is coming from an environment
map outside the room. Most of the light enters the room through
the small window, so direct lighting samples will be occluded and
BRDF samples will typically fail to exit the room resulting in
extremely noisy results from path tracing. Furthermore, at such
a low sample count Müller et al. [MGN17] still has not refined
the quadtree/octree enough to see a benefit. Sampling from their
coarse data structure is counterproductive and reduces the quality
in certain regions relative to standard MIS with BRDF sampling.
Meanwhile, Vorba et al. [VKv∗14] also runs into problems since
the Gaussian mixture models (GMMs) that were fit in their pre-
rendering training stage are not reliable and would need signifi-
cantly more samples to discover additional useful light paths and
generate more accurate sampling densities.

Overall, both Ours and Ours (NoGAN) perform favorably rel-
ative to previous approaches both before and after denoising and
we encourage readers to view the supplemental reports to better
compare results. There is notable improvement when using our full
approach relative to the NoGAN version both perceptually and nu-
merically. In particular, the insets for Dining Room and Veach
Ajar in Fig. 8 highlight regions where the rendered output is con-
siderably less converged and which leave residual black artifacts
even after denoising. We provide additional discussion about our
performance relative to that without a GAN in the next section.

For completeness, we also report trimmed and non-trimmed ver-
sions of MrSE across 5 runs with different random seeds for all
methods in Table 1. Note we took the median of the non-trimmed
errors as we saw all approaches were largely impacted (i.e., due
to spikes from rare samples of high radiance). It is interesting also
that the NoGAN version tends to have more fireflies than our full
approach as shown by the large values for the non-trimmed errors.
The NoGAN version produces overblurred sampling maps that will
sample relatively more frequently along occlusion boundaries and
will more often get extremely high-radiance, low-probability sam-
ples, which will largely impact the error.

It is worth noting that in addition to the benefit of not having
to retrain for a new rendering system, we also still do not require
any online training, which can be difficult to inject into established
production pipelines, and require only a single forward pass of the
network. The network is also robust and extrapolates well and we
were able to generate most of our results (unless otherwise noted)
using only an initial 1 spp buffer despite the network only being
trained on reconstructions from 8 spp buffers (i.e., the network ex-
trapolates to lower sampling rates than what it was trained on).

5.3.1. Convergence

We also compare the convergence characteristics of our approach
to those of other path-guiding methods as well as our method with-
out a GAN. Fig. 9 shows both the average MrSE and SSIM errors
across our 5 Mitsuba scenes using the rendered outputs of each
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method at power-of-2 sampling rates from 2 to 1024 spp. We ac-
count for different scene variances by dividing each method’s error
by the error of the 2 spp path traced result for each scene before
averaging. Our methods used 1 spp initial buffers to generate re-
sults at a total of 2, 4, and 8 spp, and 8 spp initial buffers when the
sampling budget was 16 spp or beyond. All of our results are gener-
ated without any online training or additional inferencing (beyond
the initial one). Note, our 1024 spp results are done with fifty-fifty
BRDF sampling, as the other approaches, to ensure convergence.

Both Ours and Ours (NoGAN) converge significantly faster than
the other approaches at the lower sampling rates, yet continue to
perform competitively at higher ones, especially in terms of SSIM.
Moreover, we again still see the NoGAN version of our approach
underperforming compared to our full approach due to its relatively
less accurate maps which slightly decreases its convergence rate.
Note for these plots we used the best parameter setting for each
method at each sampling rate since previous methods’ default set-
tings are not optimized for low sample counts. Please see the sup-
plemental for additional convergence results with both the best set-
tings and the default parameters.

Moreover, Fig. 10 demonstrates that our approach is also prac-
tical for high-sample-count renders, in addition to denoising. Even
at 1024 spp, our rendered result has visibly less noise, despite only
using 8 initial spp to guide the remaining budget (1016 spp), with-
out any retraining or additional inferencing. Note, the images are
best viewed at full resolution in the supplemental.

5.3.2. Complexity and timings

Since the reconstruction network operates in screen space, our
method’s cost scales linearly with the number of image pixels and
is independent of scene complexity. As mentioned in Sec. 3.3, we
can perform the incident radiance reconstruction at a subset of pix-
els to reduce the total runtime drastically without compromising
significantly on quality. For example, in our evaluation, we found
using an 8× 8 uniform stride allowed us to perform the inference
on the Mitsuba scenes shown here in only 0.6 seconds in total for
all pixels, a negligible addition to the overall render time (see Ta-
ble 1 for timing comparisons on an eight core machine), all while
still maintaining quality. In general, this stride can be decided by
the user based on the application (e.g., relatively faster rendering
pipelines might use even larger strides at the cost of accuracy).

6. Discussion, limitations, and future work

Ideally, we would learn to generate samples that would minimize a
pixel-wise `1 or `2 loss between the final rendered output and the
high-sample-count reference image. Unfortunately, this requires
the renderer to be inside the loop of training and would require
the ability to differentiate through the renderer to optimize the net-
work. Differentiable renderers have recently been receiving more
attention [LADL18], but they are an active area of research and
still not easily incorporated into such deep learning frameworks.

Instead, we optimize the incident radiance sampling maps di-
rectly. We initially attempted to optimize them using an `1 or `2
loss with highly-sampled, reference incident radiance maps, which
is akin to the NoGAN version we compare against in Sec. 5. Since

Ours (16 spp total, 8 spp init) Ours (NoGAN) Ours (ODIS) Ref. (64K spp)

NoGAN Ours Ref. NoGAN Ours Ref.

Figure 11: The red inset on the left shows a slow-to-converge re-
gion of the NoGAN approach on the Veach Ajar scene at 16 spp.
The corresponding radiance reconstructions are shown on the bot-
tom left. In this region, the slight overblurring negatively impacts
convergence. On the other hand, the green inset and radiance maps
on the lower right show a region with similar quality in the final
output from the two networks. Since there are many valid directions
to sample from, overblurring will have a smaller influence. Mean-
while, our full approach with a GAN is able to generate accurate
and sharp sampling maps in both regions for improved quality and
convergence. Note, both reconstruction maps are from a strided,
non-interpolated pixel at the center of each inset shown with a dot.

Ours (4 spp total, 1 spp init) Ours (NoFeat) Ours (ODIS) Ref. (64K spp)

Dining Room MrSE 6.06 4.14
1 − SSIM 0.86 0.84

Figure 12: Comparison to our network trained without auxiliary
features (i.e., using sparse incident radiance as the only input).
Without features (i.e., “NoFeat”), the network produces a less con-
verged result at a given sampling rate (e.g., 4 spp) relative to our
full approach. Features related to depth and normals are helpful in
deciding a bin’s reliability, thereby guiding the network to have a
more accurate reconstruction and, ultimately, better sampling.

our input data is extremely sparse (just a few sampled directions in
each hemisphere), the network can have difficulties properly filling
in the large missing regions/holes and outputs blurry maps instead.
These maps waste samples on areas with no light contribution (e.g.,
occluded regions) and ignore directions with significant incoming
radiance, thereby significantly slowing convergence. Instead, we
chose to use an `1 + GAN loss to have both sharp and accurate
sampling maps, a strategy that has achieved state-of-the-art results
in applications such as super-resolution [LTH∗17].

For example, in the red inset of Fig. 11, we highlight a region of
the Veach Ajar scene rendered with an 8 spp initial budget and a
16 spp total budget where Ours (NoGAN) is clearly less converged
than our full approach with a GAN (“Ours”). In the bottom left, we
show the radiance maps at one of the less converged pixels from the
NoGAN image and compare it to Ours and the high-sample-count
reference. In this scene, light enters only through the cracked door
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Ours (8 spp total, 1 spp initial) Path OLPM PPG Ours (ODIS) Ref. (256K spp)

Kitchen (Specular) MrSE 23.38 20.72 21.29 19.66
1 − SSIM 0.86 0.86 0.87 0.85

Kitchen (Specular w/ 4 bounces) MrSE 14.27 11.82 15.83 16.55
1 − SSIM 0.88 0.87 0.89 0.88

Figure 13: Examples of limitations of our method. The top row shows an example of the original Kitchen scene from Müller et al. [MGN17]
that contains specular/glossy materials. Since our method only importance samples the incident radiance and not the full product with the
BRDF, it could waste samples in directions that have no final radiance contribution. Meanwhile, the bottom row has the same scene but it
includes additional indirect bounces (i.e., 4 total bounces) that have significant radiance contributions at higher bounces (e.g., the mirror in
the green inset). Since our approach only importance samples our network generated maps at the first bounce and uses standard MIS for the
subsequent bounces, it will have difficulty discovering directions where only a small solid angle has contribution and also cannot be utilized
to choose better sampling directions at later bounces.

on the right and this pixel receives most of its radiance contribution
through a specific direction from another bounce towards the door.

Our radiance map is sharper and closer to the reference com-
pared to the NoGAN version, which is blurry and thereby more
frequently assigns nonzero probability for directions with no con-
tribution. For low-sample-count renders, it is important to avoid
wasting samples in these directions as it will noticeably impact
convergence. On the other hand, there are regions such as the green
inset on the right where many directions have non-zero contribu-
tion and a slight overblurring will have less impact. Thus, the final
output quality of the two networks is comparable in these regions.

Ultimately, our full network with a GAN is more robust as it
can handle both cases and produces maps that are both sharp and
accurate. This translated to consistently better performance in all of
our evaluations relative to the NoGAN version of our network.

In Fig. 12, we show the importance of our auxiliary features
(e.g., first and second bounce normals and depth) in the quality of
the results. The “NoFeatures” comparison uses only sparse incident
radiance to predict the dense reconstruction without the guidance of
the features present in our full approach, and, as a result, produces
less accurate sampling maps and worse convergence both numeri-
cally and perceptually. In the red inset, we see slower convergence
along the wall where, for example, second bounce depth could be

helpful in determining which bins are being occluded by an object
and which ones are seeing the light source. Meanwhile, the shading
normals of the chairs and cups (green inset) can be leveraged by the
network to determine radiance coming from different objects. We
found the auxiliary features were useful across all the scenes we
tested on, but it would be interesting to further explore additional
features that can be leveraged for even better results.

Our approach has some limitations, however, which are subjects
of future work. For example, in Fig. 13, we show how our algorithm
performs on the Kitchen scene from Müller et al. [MGN17], which
is a challenging case for our approach due to the specular/glossy
materials as well as the significant radiance contributions coming
from higher order bounces such as the highlight in the mirror shown
in the green inset. For all of these comparisons, except path trac-
ing, we randomly choose with equal probability (i.e., fifty-fifty)
between BRDF sampling or sampling using the method.

The top row shows comparisons of the scene with specular inter-
actions but still using two bounces (i.e., direct and one-bounce in-
direct). The red inset shows a countertop with some specular high-
lights where our approach and PPG are relatively more converged
than OLPM and standard path tracing because of the counter’s dif-
fuse lobe. On the other hand, for the green inset, we show how the
different methods handle the boundary between a mirror and a dif-
fuse wall. Both OLPM and our approach are more converged on
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the wall, while PPG is able to discover more radiance contributions
along paths from the mirror. Due to the mirror’s perfectly specular
BRDF, most incident directions will have no contribution even if
they are otherwise visible. Since the BRDF is not accounted for in
our reconstructed sampling maps, we will waste samples on these
zero-radiance paths and have a relatively less-converged result.

In order for our system to handle these scenes properly, we need
a way to account for the BRDFs at each surface. We believe that
learning to directly reconstruct the full product of the incident radi-
ance with the BRDF from sparse samples is a complex relationship
that could be difficult to properly capture with our network. How-
ever, one alternative to better handle BRDFs would be to precom-
pute the BRDF with the same grid parameterization as our incident
radiance. During runtime, this data could be queried to evaluate the
product and importance sample the result instead of just the inci-
dent radiance. This has the extra overhead that the BRDF would
have to be precomputed as a 4-D table (accounting for incoming
and outgoing directions), but this would be done only once per
BRDF (not per-scene) and would not significantly impact runtimes.

In the bottom row, we show the scene with specular materials,
but having 4 total bounces. The red inset shows that we continue
to converge relatively well along the diffuse cabinets, but we miss
more of the orange highlights compared to other approaches. In
particular, OLPM is able to collect the most orange highlights along
the window in the lower right corner of the inset. Meanwhile, the
green inset shows OLPM continues to perform particularly well
along the boundary between the wall and the mirror and already
has the correct brightness with only a few samples. Furthermore,
PPG is also more converged in the specular mirror region when
compared to our approach, while ours does better on the wall. Both
OLPM and PPG can utilize radiance contributions that occur many
bounces away. However, our approach works in screen space and
uses standard MIS beyond the second bounce, so it is unable to uti-
lize the network’s reconstructed maps at later bounces to improve
convergence. Since the previous approaches work in world space
instead, they are able to importance sample from their fitted model
(OLPM) or data structure (PPG) at every bounce. We had initially
explored reconstruction in path space, but found that 4-D and 5-D
convolutions were slow, difficult to train, and require more study.

Another limitation is that we use fixed grid resolutions and if the
resolution is too coarse then our method could fail to discover and
properly sample small light features (e.g., caustics) and could also
have reduced performance with tight, specular BRDFs that only al-
low light through a small solid angle. Finally, our code is not opti-
mized and it might be possible to get inference times that are faster
than 0.6 seconds and to additionally explore inferencing at mul-
tiple stages of rendering to continually update our sampling map,
thereby further improving convergence at high sample counts.

7. Conclusion

In this paper, we presented an algorithm for importance sampling
the first-bounce direction during path tracing by estimating the in-
cident radiance at a point on the scene using neighboring sam-
ple information. As with related work on MC denoising, we do
this by leveraging deep learning networks that can learn the com-
plex interpolation function that maps the neighborhood of samples

to an accurate estimate of the incident radiance. Unlike existing
path-guiding algorithms which require an expensive online train-
ing step during rendering, this formulation allows our method to
be trained entirely offline on a set of training scenes, making the
algorithm much faster at runtime and leverages this multi-scene
model to produce good results even at extremely low sampling
rates. Our method is straightforward to integrate into existing ren-
dering pipelines, as we demonstrate by incorporating it into both
the Mitsuba and Blender/Cycles renderers, and we plan to release
our code, trained weights, and the training set upon publication.
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[VK16] VORBA J., KŘIVÁNEK J.: Adjoint-driven russian roulette and
splitting in light transport simulation. ACM Transactions on Graphics
(TOG) 35, 4 (July 2016), 42:1–42:11. 3

[VKK18] VÉVODA P., KONDAPANENI I., KŘIVÁNEK J.: Bayesian on-
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